Schalter aus Graphen: Gruppe am HZB erreicht erste Etappe

Eine Aufnahme mit dem Rastertunnelmikroskop zeigt die Topografie von Graphen auf Gold. Durch Überlagerung der Goldstruktur und der sechseckigen Bienenwaben-Struktur des Graphens entsteht eine regelmäßige Überstruktur (Moiréstruktur), die zehnfach größer ist als die Maschen des Graphennetzes. Der Begriff stammt von der Moiré-Seide, wo der gleiche Effekt eine typische Maserung erzeugt. Diese Moiréstruktur beeinflusst die chemische Wechselwirkung zwischen den beiden atomaren Schichten und darüber auch die elektronischen Eigenschaften und das Verhalten der Spins.<br><br>Bild: HZB/Andrei Varykhalov<br>

Es ist nicht nur mechanisch enorm belastbar, sondern auch als Basis für neue spintronische Bauelemente interessant, die die magnetischen Momente der Leitungselektronen nutzen.

Eine Gruppe von Physikern aus dem Helmholtz-Zentrum Berlin um Dr. Andrei Varykhalov und Prof. Dr. Oliver Rader hat nun einen ersten Schritt auf dem Weg zu Graphen-Bauelementen gemacht. Dabei arbeiteten sie mit Kollegen aus St. Petersburg, Jülich und Harvard zusammen.
Wie sie am 27. 11.2012 in Nature Communications (DOI: 10.1038/ncomms2227) berichten, gelang es ihnen, die so genannte Spin-Bahn-Kopplung der Leitungselektronen im Graphen um den Faktor 10.000 zu erhöhen. Dies reicht aus, um damit einen Schalter zu realisieren, der über kleinste elektrische Felder gesteuert werden kann.

Die Graphenschicht befand sich dafür auf einem Substrat aus Nickel, dessen Atome untereinander fast die gleichen Abstände haben wie die sechseckigen Maschen des Graphennetzes. Anschließend bedampften die Physiker diese Probe mit Goldatomen, die zwischen Graphen und Nickel krochen.

Am Elektronenbeschleuniger BESSY II konnten sie mit verschiedenen spektroskopischen Methoden messen, wie sich dadurch die elektronischen Eigenschaften im Graphen veränderten: Ganz genau wie die Erde verfügen Elektronen über zwei Drehimpulse, den Bahndrehimpuls, der sie um den Atomkern kreisen lässt, sowie den Spin, der einer Drehung um sie selbst entspricht.

Eine starke Spin-Bahn-Kopplung bedeutet dann einen großen Energieunterschied je nachdem, ob beide Drehungen miteinander oder entgegengerichtet sind. Nun ist bei leichten Kernen wie den Kohlenstoff-Atomen die Wechselwirkung zwischen Spin und Bahn eher schwach, bei schweren Atomen wie den Goldatomen dagegen sehr stark. „Wir konnten zeigen, dass die Goldatome über ihre Nähe zur Graphenschicht diese Wechselwirkung auch in der Graphenschicht um den Faktor 10.000 erhöhen“, erklärt Dmitry Marchenko, der die Messungen im Rahmen seiner Promotion durchgeführt hat.

Diese sehr starke Spin-Bahn-Kopplung würde es ermöglichen, eine Art Schalter zu bauen, sagt Varykhalov, denn nun könnte ein elektrisches Feld die Spins drehen. Zwei Spinfilter vor und hinter dem Bauelement würden jeweils nur Spins in einer Richtung durchlassen. Stünden die Spinfilter senkrecht zueinander, käme kein Spin mehr durch, der Schalter wäre geschlossen. Ein elektrisches Feld würde die Spins jedoch drehen, so dass es den Schalter wieder teilweise oder sogar ganz aufdrehen könnte.

„Wir haben sogar nachweisen können, dass nur die Elektronen in den 5d-Orbitalen der Gold-Atome die Spin-Bahn-Wechselwirkung im Graphen erhöhen. Das stimmt mit den theoretischen Modellen überein“, sagt Varykhalov. Doch die nächste Schwierigkeit wartet schon auf die HZB-Physiker: ein Bauteil auf Graphenbasis müsste eigentlich auf einer nichtleitenden Unterlage sitzen und nicht auf dem Metall Nickel. Aber daran arbeiten sie schon.

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer