Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Saarbrücker Forscher ordnen Nanopartikel wie „Riesen-Atome“ an

04.06.2012
Wissenschaftler des INM – Leibniz Institut für Neue Materialien haben herausgefunden, dass sich bestimmte Nanopartikel zu Gruppen anordnen, als wären sie Atome.
Wie die Atome von Metallen oder Edelgasen bilden sie dabei je nach Anzahl ganz bestimmte Formen. Durch ihren Fund können die Forscher jetzt genau definierte Gebilde aus Nanopartikeln herstellen. Normalerweise bilden Nanopartikel eher ungeordnete, oft ziemlich lockere, fusselige Klumpen. Die Ergebnisse wurden jüngst in der Zeitschrift „Nano Letters“ veröffentlicht.

Die Forscher gehen davon aus, dass dieses unerwartete Verhalten von der Kleinheit der Nanoteilchen herrührt: „Wir nehmen an, dass sich Nanoteilchen mit einer Größe von nur sechs Nanometern ähnlich verhalten, wie Atome: Sie bewegen sich schnell, stoßen aneinander und ziehen sich an “, erklärt Tobias Kraus, Leiter des Programmbereichs Strukturbildung auf kleinen Skalen. Deshalb könnten sie sich auch beinahe so ordentlich anordnen wie Atome.

Je nach Anzahl der Nanoteilchen können die Wissenschaftler nun sogar voraussagen, welches dreidimensionale Gerüst die Partikel ausbilden. „Stellen Sie sich vor, dass solche Ansammlungen, sogenannte Cluster, mit 20 Teilchen wie eine Kugel aussehen, während 40 Teilchen sich eher wie ein Würfel anordnen und 60 Teilchen wie eine Pyramide“, erklärt der Materialwissenschaftler und Chemie-Ingenieur. So lassen sich gezielt Formen herstellen, indem man die Menge der Nanopartikel vor dem Herstellungsprozess festlegt. „Weil Nanopartikel als Kugel andere Eigenschaften haben, als Nanopartikel in Form eines Würfels, können wir mit der Anzahl der Teilchen gezielt Einfluss auf die Eigenschaften nehmen“, sagt Kraus, „Ein eher länglicher Cluster passt beispielsweise durch die Poren eines Filters, obwohl er mehr Partikel enthält als ein kugelförmiger Cluster“.

Geordnete Nanopartikel im Elektronenmikroskop in der Durchsicht: Jeder Punkt stellt ein Nanopartikel dar. Quelle: INM


Wenn das Öl (grün) verdunstet, ordnen sich die Nanopartikel (rot) geordnet an. Quelle: INM

Die Wissenschaftler nutzen ein weit verbreitetes Prinzip, um die Nanopartikel in diese hochgeordnete Struktur zu zwingen. Dazu müssen die Goldnanopartikel alle gleich groß sein, was mit einem klassischen Verfahren gelingt: Die Forscher lösen kleine Goldbarren in konzentrierter Säure auf, verbinden das gelöste Gold mit organischen Molekülen und fügen oberflächenaktive Substanzen hinzu. Aus diesem Gemisch erhalten sie durch Erhitzen die Nanopartikel in einer Größe von sechs Millionstel Millimeter. Sie schwimmen in Öl, das die Forscher in kleine Tropfen zerteilen. Jeder Tropfen enthält mehrere Nanopartikel. „Wenn diese Tröpfchen verdunsten, bleibt für die Nanoteilchen immer weniger Platz und sie rücken sozusagen geordnet aneinander und bilden die geordneten Cluster aus“, fasst Kraus zusammen.

In Zukunft will das Team verschiedene Partikel in die Cluster einbauen, von denen jedes eine andere Aufgabe hat. Damit sei der erste Schritt zu einer mikroskopischen Maschine getan.

Originalpublikation: Johann Lacava, Philip Born, Tobias Kraus, “Nanoparticle Clusters with Lennard-Jones Geometries”, NanoLetters, DOI: 10.1021/nl3013659

Ansprechpartner:
Dr. Tobias Kraus
Programmbereich Strukturbildung auf kleinen Skalen
INM – Leibniz-Institut für Neue Materialien gGmbH
Tel: +49 681 9300 389
E-Mail: tobias.kraus@inm-gmbh.de

Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung richten die Forscher ihren Blick auf drei wesentliche Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig für industrielle und lebensnahe Anwendungen nutzen? Das INM - Leibniz-Institut für Neue Materialien gGmbH mit Sitz in Saarbrücken ist ein international sichtbares Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz e.V. und beschäftigt rund 190 Mitarbeiter. Seine Forschung gliedert sich in die drei Felder Chemische Nanotechnologie, Grenzflächenmaterialien und Materialien in der Biologie.

Dr. Carola Jung | idw
Weitere Informationen:
http://www.inm-gmbh.de/
http://www.wgl.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Schäden im Leichtbau erkennen durch Ultraschallsensoren
10.12.2019 | Technische Universität Braunschweig

nachricht Wie Graphen-Nanostrukturen magnetisch werden
10.12.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Humane Papillomviren programmieren ihre Wirtszellen um und begünstigen so die Hautkrebsentstehung

12.12.2019 | Medizin Gesundheit

Urbane Gärten: Wie Agrarschädlinge von Städten profitieren

12.12.2019 | Biowissenschaften Chemie

Die „Luft“ im Ozean wird dünner - Sauerstoffgehalte im Meerwasser gehen weiter zurück

12.12.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics