Röntgenblick in die Kunststoff-Solarzelle

Stephan Pröller (li.) und Dr. Eva M. Herzig untersuchen Kunststoff-Solarzellen. Uli Benz / TUM

Solarmodule, die auf den Dächern vieler Häuser zu sehen sind, bestehen größtenteils aus dem Halbleiter Silizium. Sie sind schwer, ihre Befestigung auf Dächern daher aufwändig. Auch fügen sie sich oft nicht harmonisch in die Umgebung ein.

Eine Alternative zu herkömmlichen Solarzellen sind die sogenannten organischen Solarzellen, die aus Kunststoff bestehen. Diese können einfach als dünner Film mit einem industriellen Drucker hergestellt werden. Die Installation dieses Films an verschiedenen Orten ist unkompliziert. Außerdem ist es auch möglich, die Farbe und Form der Solarzellen zu verändern. Allerdings gibt es einen Nachteil: Noch reicht die Effizienz der organischen Photovoltaik nicht an die Silizium-Solarzellen heran.

Prozesse auf Nanoebene

Eine Stellschraube, um mithilfe der flexiblen Solarzellen mehr Energie aus der Sonne zu gewinnen, ist die Anordnung der molekularen Bausteine des Materials. Diese ist wichtig für die Energieumwandlung. Denn wie bei der „klassischen“ Solarzelle müssen freie Elektronen erzeugt werden. Dazu benötigen Kunststoffsolarzellen zwei Materialtypen: Einen, der Elektronen abgibt (Elektronendonator), und einen, der sie wieder aufnimmt (Elektronenakzeptor).

Diese Materialien müssen eine möglichst große Grenzfläche zueinander aufweisen, um Licht in Strom umzuwandeln. Wie genau sich die Moleküle beim Drucken der Solarzellen zueinander anordnen und wie die Kristalle während des anschließenden Trocknungsvorgangs wachsen, ist nicht bekannt.

„Um die Anordnung der Bausteine gezielt beeinflussen zu können, müssen wir verstehen, was auf molekularer Ebene passiert“, erklärt Dr. Eva M. Herzig von der Munich School of Engineering (MSE) der TUM. Solche kleinen Strukturen innerhalb eines trocknenden Films zeitaufgelöst zu messen ist eine experimentelle Herausforderung.

Je langsamer, desto effizienter

Stephan Pröller, Doktorand an der MSE, nutzte in Zusammenarbeit mit dem Lawrence Berkeley National Laboratory, USA, Röntgenstrahlung, um die Moleküle und deren Prozesse während des Druckens eines Kunststoff-Films sichtbar zu machen. Dabei identifizierte er verschiedene Phasen, die beim Trocknen des Films ablaufen.

Anfangs verdampft das Lösungsmittel, wodurch sich die Konzentration der Kunststoffmoleküle im noch feuchten Film stetig erhöht. Ab einer gewissen Konzentration beginnt das Material, das als Elektronendonator fungiert, zu kristallisieren; die Moleküle des Elektronenakzeptors bilden Aggregate. Die Elektronendonator-Kristalle vergrößern sich schnell, was dazu führt, dass sich auch die Elektronenakzeptor-Aggregate weiter zusammenschieben. Dieser Prozess legt die Abstände der Grenzflächen zwischen den beiden Materialien fest. Diese sind entscheidend für die Effizienz. Um die Solarzellen zu verbessern, muss daher bei diesem Prozessschritt angesetzt werden.

In der letzten Phase finden noch Optimierungsprozesse innerhalb der jeweiligen Materialien statt, wie die Verbesserung der Packungsdichte in den Kristallen.

„Die Geschwindigkeit der Herstellung spielt eine wichtige Rolle“, erklärt Pröller. Bei schnelleren Trocknungsvorgängen bleibt der Ablauf zwar gleich. Allerdings beeinflussen die von den Materialien gebildeten Aggregate und Kristalle den weiteren Verlauf der Strukturbildung. Eine langsamere Strukturbildung wirkt sich positiv auf die Effizienz der Solarzellen aus.

Die Forscher wollen nun die gewonnenen Kenntnisse der Abläufe nutzen, um gezielt mit weiteren Parametern die Kontrolle über die Anordnung der Materialien zu bekommen. Diese Ergebnisse können dann in die industrielle Herstellung übertragen und diese damit optimiert werden.

Publikation:
Organic Solar Cells: Following the Morphology Formation In Situ in Printed Active Layers for Organic Solar Cells, Pröller et al., Advanced Energy Materials, Volume 6, Issue 1, January 2016.
DOI: 10.1002/aenm.201501580

Kontakt:
Dr. Eva M. Herzig
Technische Universität München
Munich School of Engineering
Tel: +49-(0)89-289-13831
eva.herzig@ph.tum.de
www.opv.mse.tum.de

https://mediatum.ub.tum.de/?id=1289526#1289526 Bilder zum Download
http://onlinelibrary.wiley.com/wol1/doi/10.1002/aenm.201501580/full Link zum Paper

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer