"Goldrausch" im Chemielabor: Neue Materialien für die Hochtemperatur-Supraleitung gesucht

Es ist zwar kein Gold, aber seine Entdeckung dürfte fast genauso wertvoll sein: Wer zuerst das geeignete Material für die Hochtemperatur-Supraleitung findet, hält den Schlüssel für völlig neue Zukunftstechnologien in den Händen. „Supraleiter, wie sie heute schon eingesetzt werden, funktionieren nur bei sehr tiefen Temperaturen.

Der Traum wäre ein Hochtemperatur-Supraleiter, der den Strom bei Raumtemperatur ohne Verluste transportieren kann“, erklärt Univ.-Prof. Dr. Claudia Felser vom Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität Mainz.

Im Rahmen verschiedener Forschungskooperationen untersucht die Chemikerin neue Materialien, die als geeignete Kandidaten erscheinen. Hoffnungsträger ist neuerdings eine Verbindung aus Eisen und Selen, das Eisenselenid. Eine Kooperationsarbeit über diese Verbindung wurde nun im Fachmagazin Nature Materials veröffentlicht.

Supraleitung entsteht, wenn bestimmte Materialien durch Herunterkühlen auf eine sehr tiefe Temperatur ihren magnetischen Widerstand verlieren und der Strom verlustfrei fließen kann. Für Blei beispielsweise liegt diese Temperatur bei etwa minus 265 Grad Celsius. Der Kühlaufwand hierfür ist jedoch enorm, weshalb nach Verbindungen gesucht wird, die bei höheren Temperaturen Supraleitung aufweisen: die Hochtemperatur-Supraleiter. Nur ganz wenige Verbindungen zeigen Supraleitung bei Temperaturen über 30 Kelvin, das sind etwa minus 243 Grad Celsius, und diese Verbindungen werden als Hochtemperatur-Supraleiter bezeichnet.

In den Laboren der Chemiker weltweit herrscht Goldgräberstimmung, seitdem vor rund einem Jahr ein neuer Hochtemperatur-Supraleiter entdeckt worden ist: Verbindungen mit Eisenarsenid-Schichten wie zum Beispiel Ba0.6K0.4Fe2As2 in der chemischen Formel. Die Entdeckung war überraschend, weil Eisen ein magnetisches Material ist, Magnetismus und Supraleitung sich aber grundsätzlich ausschließen. „Die Hochtemperatur-Supraleitung ist noch nicht wirklich verstanden. Wir können daher nur annehmen, dass Eisen in den supraleitenden Verbindungen aufgrund einer bestimmten Anordnung seiner Atome im Kristall und der besonderen elektronischen Struktur unmagnetisch wird“, erklärt Frederick Casper aus der Arbeitsgruppe von Prof. Felser. „Der Magnetismus wird praktisch ausgetrickst.“

Ganz ähnlich wie die komplexen Eisenarsenid-Verbindungen verhält sich auch das Eisenselenid, mit der einfachen chemischen Formel FeSe. In einer Forschungskooperation mit der Hochdruckgruppe von Mikhail Eremets am Max-Planck-Institut für Chemie in Mainz, Gerhard Wortmann von der Universität Paderborn und Robert J. Cava von der Princeton University haben die Wissenschaftler der Universität Mainz nun gezeigt, dass Eisenselenid unter einem Druck von 8,9 Gigapascal bei 36,7 Kelvin zum Supraleiter werden kann im Vergleich zu einer Temperatur von 8,5 Kelvin ohne Druck. Unter Druck geht die sogenannte Sprungtemperatur nach oben, also die Temperatur, bei der ein Material supraleitend wird. Wird der Druck auf die FeSe-Probe noch weiter erhöht, verhält sich das Material wie ein Halbleiter. Diese Erkenntnisse über eine chemisch relativ einfache Verbindung wie FeSe sind von großer Bedeutung im Hinblick auf die Suche nach neuen Hochtemperatur-Supraleitern.

„Mit Eisenselenid wird zu den interessanten Hochtemperatur-Supraleitern ein neues und besonders einfaches Material hinzugefügt“, erklärt Felser. Eisenselenid ist deshalb besonders interessant, weil es wie Eisenarsenid-Verbindungen zu flexiblen Drähten verarbeitet werden könnte und auch hohe externe Magnetfelder aushält. „Das wäre der Durchbruch für die Hochtemperatur-Supraleitung“, so der Mainzer Physiker Vadim Ksenofontov. Andere Materialien für die Hochtemperatur-Supraleitung sind die Cuprate, Verbindungen mit Kupfer, die allerdings spröde sind wie eine Keramik und sich daher schwer verarbeiten lassen.

Der Druck dient in diesen Versuchen quasi als Stellvertreter für andere Elemente, die in das Material eingebracht werden könnten. „Anstelle des mechanischen Drucks, den wir in den Versuchen erzeugen, kann auch ein chemischer Druck hergestellt werden. Dazu müssten dann kleinere Atome eingebracht werden, sodass alle Atome in der Verbindung näher zusammenrücken müssen“, sagt Mikhail Eremets. „Druck ist eine exzellente Methode, um Materialien systematisch auf ihr Potenzial als Supraleiter zu testen“, so Felser. Durch die Kooperation der Arbeitsgruppen um Felser, Wortmann und Eremets ist nun auch die Anwendung der Mößbauerspektroskopie unter hohem Druck in Mainz möglich – eine Technik, die weltweit nur an wenigen Plätzen angewendet wird und die bei der Suche nach dem „Traum-Material“ sehr hilfreich ist. Dazu werden in Mainz weitere Arbeiten im Rahmen von internationalen Kooperationen folgen.

Originalveröffentlichung:
S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann & C. Felser
Electronic and magnetic phase diagram of beta-Fe1.01Se with superconductivity at 36.7 K under pressure

Online publiziert, Nature Materials (14 June 2009) doi:10.1038/nmat2491

Kontakt und Informationen:
Univ.-Prof. Dr. Claudia Felser
Institut für Anorganische Chemie und Analytische Chemie
Johannes Gutenberg-Universität Mainz
Tel. 06131 39-26266 oder 39-21284
Fax 06131 39-26267
E-Mail: felser@mail.uni-mainz.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer