Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenketten in Graphen-Nanobändern

09.08.2018

Empa-Forschenden ist gemeinsam mit Forschenden des Max Planck Instituts für Polymerforschung in Mainz und weiteren Partnern ein Durchbruch gelungen, der künftig für präzise Nanotransistoren oder – in fernerer Zukunft – möglicherweise gar bei Quantencomputer Anwendung finden könnte, wie das Team in der aktuellen Ausgabe des Fachjournals «Nature» berichtet.

Ein Material, das aus Atomen eines einzigen Elements besteht, aber je nach atomarem «Schnittmuster» ganz andere Eigenschaften aufweist – das mag seltsam klingen, ist aber bei Nanobändern aus Graphen tatsächlich Realität.


Wenn Graphen-Nanobänder Sektionen verschiedener Breite enthalten, so können in den Übergangszonen sehr robuste neue Quantenzustände entstehen.

Empa

Die Bänder, die nur wenige Kohlenstoffatome breit und genau ein Atom dick sind, besitzen je nach Form und Breite ganz unterschiedliche elektronische Eigenschaften: Leiter, Halbleiter oder aber Isolator. Einem internationalen Forschungsteam unter Federführung der Empa-Abteilung «nanotech@surfaces» ist es nun gelungen, durch eine gezielte Variation der Form der Bänder deren Eigenschaften präzise einzustellen.

Das Besondere daran: Damit lassen sich nicht nur die oben genannten «gewöhnlichen» elektronischen Eigenschaften verändern – auch die Erzeugung spezieller lokaler Quantenzustände ist durch diese Technologie möglich.

Was steckt dahinter? Wenn die Breite eines schmalen Graphen-Nanobands ändert, in diesem Fall von sieben auf neun Atome, entsteht am Übergang eine spezielle Zone: Weil sich die elektronischen Eigenschaften der beiden Bereiche auf eine besondere, sogenannte topologische Art unterscheiden, entsteht in der Übergangszone ein «geschützter» und damit sehr robuster neuer Quantenzustand.

Diesen örtlich begrenzten elektronischen Quantenzustand kann man nun als Grundbaustein nutzen, um massgeschneiderte Halbleiter, Metalle oder Isolatoren zu erzeugen – und möglicherweise sogar einmal als Bauelement in Quantencomputern einzusetzen.

Die Forschenden der Empa unter der Leitung von Oliver Gröning konnten zeigen: Werden die Bänder so gebaut, dass sich unterschiedlich breite Bereiche regelmässig abwechseln, dann entsteht durch die vielen Übergänge eine Kette von untereinander verknüpften Quantenzuständen mit einer eigenen elektronischen Struktur.

Das Spannende daran: Je nach Breite der unterschiedlichen Segmente ändern sich die elektronischen Eigenschaften der Kette. Dadurch lassen sich diese fein einstellen – vom Leiter zu Halbleitern mit unterschiedlich grossen Bandlücken. Dieses Prinzip lässt sich auf viele verschiedene Überganszonen anwenden – zum Beispiel auch auf diejenige von sieben auf elf Atome.

«Die Bedeutung dieser Entwicklung wird auch dadurch unterstrichen, dass eine Forschergruppe der University of California, Berkeley, unabhängig von uns zu analogen Ergebnissen gekommen ist», so Gröning. Die Arbeit des US-Forscherteams ist in derselben «Nature»-Ausgabe erschienen.

Auf dem Weg zur Nanoelektronik

Auf Basis dieser neuartigen Quantenketten könnten sich künftig präzise Nanotransistoren herstellen lassen – ein grundlegender Schritt auf dem Weg zur Nanoelektronik. Denn ob der Schaltabstand zwischen dem «1»-Zustand und dem «0»-Zustand des Nanotransistors auch tatsächlich genügend gross ist, hängt von der Bandlücke des Halbleiters ab – und mit der neuen Methode lässt sich diese fast beliebig einstellen.

In der Realität ist dies aber nicht ganz so einfach: Damit die Kette die gewünschten elektronischen Eigenschaften erhält, muss jedes einzelne der mehreren hundert oder gar tausenden Atome auch am richtigen Ort sein. «Dahinter steckt eine komplexe, interdisziplinäre Forschungsarbeit», so Empa-Forscher Gröning.

«Dabei arbeiteten Forschende aus unterschiedlichen Fachgebieten in Dübendorf, Mainz, Dresden, und Troy (USA) zusammen – vom theoretischen Verständnis über das spezifische Wissen, wie Vorläufermoleküle gebaut werden müssen und wie man die Strukturen auf Oberflächen gezielt wachsen lassen kann, bis hin zur strukturellen und elektronischen Analyse mittels eines Rastertunnelmikroskops.»

Ein Ausflug in die Quantenwelt

Ultrakleine Transistoren – und damit der nächste Schritt in der weiteren Miniaturisierung elektronischer Schaltkreise – liegen hier als Anwendungsmöglichkeit nahe: Sie sind zwar eine technische Herausforderung, doch eigentlich funktioniert Elektronik, die auf Nanotransistoren aufgebaut ist, nicht fundamental anders als die heutige Mikroelektronik.

Die von den Empa-Forschern hergestellten halbleitenden Nanobänder würden es erlauben, Transistoren mit einem 1’000-mal kleineren Kanalquerschnitt als heute üblich zu realisieren. Es lassen sich aber auch weitergehende Möglichkeiten vorstellen, etwa im Bereich der Spintronik oder gar der Quanteninformatik.

Denn die elektronischen Quantenzustände an bestimmten Übergängen verschieden breiter Graphen-Nanobänder können zusätzlich auch ein magnetisches Moment tragen. Dies könnte es ermöglichen, Information nicht wie bisher üblich durch Ladung, sondern durch den sogenannten Spin – im übertragenen Sinne die «Drehrichtung» des Zustandes – zu verarbeiten.

Und die Entwicklung könnte sogar noch einen Schritt weitergehen. «Wir haben beobachtet, dass an den Enden bestimmter Quantenketten topologische Endzustände auftreten. Dies bietet die Möglichkeit, diese sich als Elemente sogenannter Qubits zu nutzen – die komplexen, untereinander verschränkten Zustände in einem Quantenrechner», erklärt Oliver Gröning.

Heute und morgen wird aber noch kein Quantencomputer aus Nanobändern gebaut – es sei noch einiges an Forschung nötig, so Gröning: «Die Möglichkeit, die elektronischen Eigenschaften durch die gezielte Verknüpfung einzelner Quantenzuständen flexibel einzustellen, stellt für uns einen grossen Sprung in der Herstellung neuer Materialien für ultra-miniaturisierte Transistoren dar.» Dabei spielt die Tatsache, dass diese Materialien unter Umgebungsbedingungen stabil sind, für die Entwicklung künftiger Anwendungen eine wichtige Rolle.

«Faszinierend ist allerdings auch das weitergehende Potenzial der Ketten, lokale Quantenzustände zu erzeugen und diese gezielt miteinander zu verknüpfen», so Gröning weiter. «Ob sich dieses Potenzial auch tatsächlich für künftige Quantenrechner nutzen lässt, ist allerdings noch völlig offen.» Denn hier genüge es nicht, lokalisierten topologische Zustände in den Nanobändern zu erzeugen – diese müssten auch mit andern Materialien wie Supraleitern so gekoppelt werden, dass die Voraussetzungen für Qubits tatsächlich gegeben sind.

Wissenschaftliche Ansprechpartner:

Informationen
Dr. Oliver Gröning

nanotech@surfaces
Tel. +41 58 765 4669
oliver.groening@empa.ch
Redaktion / Medienkontakt

Karin Weinmann
Kommunikation
Tel. +41 58 765 47 08
redaktion@empa.ch

Originalpublikation:

O Gröning, S Wang, X Yao, CA Pignedoli, G Borin Barin, C Daniels, A Cupo, V Meunier, X Feng, A Narita, K Müllen, P Ruffieux R Fasel; Engineering of robust topological quantum phases in graphene nanoribbons; Nature (2018); doi: 10.1038/s41586-018-0375-9

Weitere Informationen:

https://www.empa.ch/web/s604/quantum-chains

Karin Weinmann | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Knochen als Vorbild: Leichter Metallschaum wird mit Beschichtung beinhart – hält Explosionen stand
14.03.2019 | Universität des Saarlandes

nachricht Neue Methode macht Bestimmung des cw-Hintergrunds bei gepulsten Lasern zuverlässiger
14.03.2019 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kartographie eines fernen Sterns

Der am Leibniz-Institut für Astrophysik Potsdam (AIP) gefertigte Spektrograph PEPSI zeigt erste Aufnahmen der Struktur des Magnetfelds auf der Oberfläche eines weit entfernten Sterns. Mittels innovativer Verfahren lassen sich damit neue Erkenntnisse über die Vorgänge auf der Sternoberfläche gewinnen. Die Ergebnisse stellte ein Wissenschaftlerteam nun in der Fachzeitschrift Astronomy & Astrophysics vor.

Selbst mit den größten Teleskopen erscheinen die Oberflächen entfernter Sterne normalerweise nur als Lichtpunkte. Eine detaillierte Auflösung wird erst mittels...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Oszillation im Muskelgewebe

Wenn ein Muskel wächst oder eine Verletzung in ihm ausheilt, verwandelt sich ein Teil seiner Stammzellen in neue Muskelzellen. Wie dieser Prozess über zwei oszillierend hergestellte Proteine gesteuert wird, beschreibt nun das MDC-Team um Carmen Birchmeier im Fachjournal „Genes & Development“.

Die Stammzellen des Muskels müssen jederzeit auf dem Sprung sein: Wird der Muskel beispielsweise beim Sport verletzt, ist es ihre Aufgabe, sich so rasch wie...

Im Focus: Das Geheimnis des Vakuums erstmals nachweisen

Neue Forschungsgruppe an der Universität Jena vereint Theorie und Experiment, um erstmals bestimmte physikalische Prozesse im Quantenvakuum nachzuweisen

Für die meisten Menschen ist das Vakuum ein leerer Raum. Die Quantenphysik hingegen geht davon aus, dass selbst in diesem Zustand niedrigster Energie noch...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz: Ausprobieren und diskutieren

19.03.2019 | Veranstaltungen

Wissenschaftliche Tagung zur Gesundheit von Meeressäugern

18.03.2019 | Veranstaltungen

Tuberkulose - eine der ältesten Krankheiten der Menschheit eliminieren!

15.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics