Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Polymere werden berechenbar - Neues Simulationsverfahren für Kunststoffe und Biopolymere

03.05.2010
Was hält ein neuer Kunststoff aus, wie halten Biopolymere zusammen? Durch eine Vorausberechnung der Eigenschaften, könnten Materialwissenschaftler massiv Entwicklungskosten sparen und Biophysiker die Eigenschaften von Biopolymeren und menschlichen Zellen untersuchen.

Doch bisherige Berechnungsmethoden stoßen hier an ihre Grenzen. Ingenieure der Technischen Universität München haben nun die im Ingenieurwesen häufig angewandte Finite-Elemente-Methode so erweitert, dass eine derartige Vorausberechnung möglich wird.

Technische Kunststoffe bestehen aus langen, kettenartigen Molekülen. Deren Beweglichkeit hat einen entscheidenden Einfluss auf die Materialeigenschaften. Könnte man sie besser vorausberechnen, so würde dies bei der Entwicklung neuer Kunststoffe sehr viel Zeit und Geld sparen. Auch die Biologie steht vor ähnlichen Problemen: Biopolymere Netzwerke sind von entscheidender Bedeutung für eine Vielzahl biologisch und medizinisch relevanter Prozesse im menschlichen Körper. Insbesondere sind sie wichtig für Teilung, Bewegung und Verformung von Zellen.

Aufgrund der enormen Komplexität dieser Netzwerke ist eine Untersuchung oft nur mit Computersimulationen möglich. Die Größe und die komplexen Eigenschaften der in Materialwissenschaft und Biologie zu simulierenden Systeme setzen einer präzisen Modellierung jedoch bislang enge Grenzen. Bei Verwendung der bisher in diesen Bereichen üblichen Simulationsverfahren sprengt der Rechenaufwand selbst die Möglichkeiten von Supercomputern.

Professor Wolfgang Wall und sein Team am Lehrstuhl für Numerische Mechanik der TU München haben nun die in den Ingenieurwissenschaften als höchst effizientes Verfahren bekannte Finite-Elemente-Methode so erweitert, dass sie auch für die Simulation der Mikromechanik von Kunststoffen und Biopolymeren eingesetzt werden kann. Die Finite-Elemente-Methode erlaubt es, physikalische Effekte in einem bestimmten Gebiet zu simulieren, indem die Vorgänge auf kleinen Teilgebieten, den Finiten Elementen, in ihrer Auswirkung zusammengefasst werden und so genannten Knoten zugeschlagen werden. Während der Simulation genügt es dann, alle Rechenschritte nur noch in Bezug auf diese diskreten Knoten auszuführen.

Bislang war nicht bekannt, wie bei diesem Verfahren die in der Bio- und Polymerphysik essentiellen Effekte der statistischen Mechanik berücksichtigt werden können. Denn die Moleküle werden durch die Umgebungswärme ständig zufällig angeregt und bewegen sich daher ständig ein klein wenig. Die neu entwickelte Simulationsmethode löst dieses Problem und öffnet damit den Weg zu einer höchst effizienten Simulation der statistischen Polymer- und Biophysik. Dies ermöglicht die computergestützte Analyse auch solcher Systeme, die bislang zu groß und komplex waren.

„Die großen Vorteile der neuen Methode sind ihre Vielseitigkeit, ihre Effizienz sowie ihre solide mathematische Basis“, sagt Professor Wall. Die grundlegende Methode wird bereits für viele verschiedene Probleme aus Technik und Naturwissenschaft genutzt – zur Simulation derartiger Fragestellungen wurde sie jedoch bislang noch nicht eingesetzt. Dazu waren theoretisch anspruchsvolle Erweiterungen nötig. Erfreulicher Weise lassen sich diese jedoch in die Vielzahl bestehender, bereits weit entwickelter Softwarepakete leicht einbauen, um die Methode direkt in Simulationen anwenden zu können.

Mit Hilfe des neuen Simulationsverfahrens wollen die Ingenieure zusammen mit Biophysikern im Rahmen eines Projektes der International Graduate School of Science and Engineering (IGSSE) der TUM wesentliche Fortschritte beim Verständnis des Verhaltens biopolymerer Netzwerke erzielen. „Wir wollen verstehen, wie biopolymere Netzwerke dynamisch auf äußere Belastungen reagieren und dabei z.B. ihre Struktur anpassen.“ sagt Christian Cyron, Doktorand am Lehrstuhl für Numerische Mechanik. Daraus können wir dann ein besseres Verständnis für das mechanische Verhalten menschlicher Zellen gewinnen, das ja ebenfalls maßgeblich von einem biopolymeren Netzwerk, dem Zytoskelett, bestimmt wird. Langfristig können diese Erkenntnisse dann zur Entwicklung neuer medizinischer Technologien führen.

Originalpublikation:
Finite-element approach to Brownian dynamics of polymers, Christian J. Cyron and Wolfgang A. Wall, Physical Review E 80, 066704 2009 – DOI: 10.1103/PhysRevE.80.066704
Kontakt:
Prof. Dr. Wolfgang A. Wall
Technische Universität München
Lehrstuhl für Numerische Mechanik
Boltzmannstr. 15, 85748 Garching
Tel.: +49 89 289 15300 – Fax: +49 89 289 15301
E-Mail: wall@lnm.mw.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.lnm.mw.tum.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Oberflächeneigenschaften für holzbasierte Werkstoffe
14.08.2018 | INNOVENT e.V. Technologieentwicklung Jena

nachricht Europaweit einzigartiges Forschungszentrum geht an den Start
14.08.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Macht Sinn: Fraunhofer entwickelt Sensorsystem für KMU

15.08.2018 | Energie und Elektrotechnik

Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

15.08.2018 | Informationstechnologie

FKIE-Wissenschaftler präsentiert neuen Ansatz zur Detektion von Malware-Daten in Bilddateien

15.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics