Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Plastic Logic und IPF erweitern Zusammenarbeit bei Entwicklung polymerbasierter organischer Elektronik

18.10.2010
Plastic Logic GmbH und das Leibniz-Institut für Polymerforschung Dresden e. V. (IPF) gaben heute bekannt, dass sie ihre mehrjährige Kooperation im Rahmen eines vom Bundesministerium für Bildung und Forschung geförderten Projekts ausbauen.

Die Weiterführung der bisherigen Zusammenarbeit ist auf weitere drei Jahre angelegt. Schwerpunkt der gemeinsamen Entwicklung sind neue Methoden zur Untersuchung von organischen Elektronikkomponenten sowie die Unterstützung bei der Entwicklung organischer dielektrischer Materialien. Diese werden zum Beispiel in flexiblen Displays eingesetzt, wie sie von Plastic Logic hergestellt werden.

Plastic Logic nutzt die hervorragenden Möglichkeiten des Wissenschaftsstandorts Dresden, um seine Position als Technologieführer bei der Entwicklung der zugrunde liegenden polymer basierten Elektronik weiter auszubauen. Das organische Halbleiternetzwerk in Dresden ist während der letzten drei Jahren stark gewachsen und die Stadt wird immer mehr zum Zentrum dieser neuen, zukunftsträchtigen Technologie in Europa und weltweit. Das IPF bringt seine speziellen Kompetenzen zur Untersuchung und gezielten Gestaltung von funktionellen Polymergrenzflächen in das Projekt ein.

Konrad Herre, VP, Manufacturing und Geschäftsführer der Plastic Logic GmbH erklärte: „Dass wir jetzt die bisherige sehr gute Zusammenarbeit mit dem IPF auf einer langfristigen Basis heben und verstärken konnten, begrüße ich sehr. Dies ist ein weiterer Meilenstein in unserer langfristigen Strategie für die weitere Entwicklung sowie den Ausbau unserer Produktion hier am Standort. Auf Grund seiner jahrzehntelangen Erfahrung auf dem Gebiet der Synthese und Charakterisierung organischer Polymere ist das IPF ein sehr wichtiger Partner für uns.“

Der Projektleiter am IPF und stellvertretende Wissenschaftliche Direktor des Instituts, Prof. Dr. Manfred Stamm, befürwortet nachdrücklich diese Zusammenarbeit: „Wir freuen uns sehr, mit Plastic Logic, einer weltweit führenden Firma auf dem Gebiet der organischen Elektronik mit Polymeren, zusammenzuarbeiten. Es ergibt sich bei dieser Zusammenarbeit das ideale Zusammenspiel von Grundlagenforschung und Anwendung und durch den Einsatz modernster Technologien wird eine innovative Produktentwicklung möglich.“

Das IPF bringt in diesem Projekt seine Kompetenzen in der Charakterisierung und Modifizierung komplexer Polymergrenzflächen in die Entwicklung von Hightech-Produkten sehr gut ein. Bei der organischen Elektronik werden wenige Nanometer dicke Schichtsysteme verwendet, die nur mit aufwendigen Methoden hergestellt und analysiert werden können. Das IPF verfügt insbesondere über Methoden, die Struktur und Eigenschaften der organischen Schichtsysteme in Nanometerauflösung zu charakterisieren. Dies entspricht etwa der Dimension einzelner Polymermoleküle. Da es sich beim organischen Elektronikprodukt um ein Multikompositmaterial (d.h. ein Material aus mehreren ultradünnen Einzelschichten unterschiedlicher Materialien) handelt, sind spezielle Präparations- und Untersuchungsmethoden notwendig [s. Bild der elektronmikroskopischen Aufnahme]. Die Erkenntnisse aus diesen Untersuchungen fließen in den jeweiligen Herstellungsprozess ein. Die direkte Nähe zwischen Analyse (IPF) und Fertigung (Plastic Logic) erlaubt eine effektive Umsetzung der Analyseergebnisse in die Produkte.

Über Plastic Logic
Ziel von Plastic Logic ist es, die Beschaffung, Organisation sowie Verwertung von Informationen zu revolutionieren. Wir nutzen unsere Führungsposition bei einer Technologie im Bereich der Kunststoffelektronik, um eine Reihe von innovativen Produkten zu erstellen. Das Unternehmen wurde im Jahr 2000 von Forschern des Cavendish Labors der Universität von Cambridge gegründet und unterhält einen Standort für Forschung und Entwicklung in Cambridge, England sowie modernste Kapazitäten für Massenfertigung in Dresden. Geschäftsleitung, Produktentwicklung, Verkauf und Marketing sind im Hauptsitz in Mountain View, Kalifornien ansässig. Weitere Informationen erhalten Sie unter www.plasticlogic.com
Über IPF
Das Leibniz-Institut für Polymerforschung Dresden e. V. (IPF) ist eine der größten Polymerforschungseinrichtungen in Deutschland mit derzeit nahezu 500 Mitarbeitern.
Es betreibt ganzheitliche materialwissenschaftliche Forschung mit Polymeren von der Synthese und Modifizierung, über die Charakterisierung, theoretische Durchdringung, Verarbeitung und Prüfung bis zur Steuerung der Eigenschaften von Polymermaterialien, Biomaterialien und Verbundwerkstoffen durch gezielte Grenzflächengestaltung. Ein Schwerpunkt liegt insofern auf dem Grenzflächendesign mit Polymeren, das in verschiedenen Bereichen der Materialentwicklung entscheidend die Eigenschaften beeinflussen kann.

Die Kombination von natur- und ingenieurwissenschaftlicher Kompetenz sowie die moderne Geräte- und Anlagentechnik zeichnet das IPF aus und erlaubt es, die Materialentwicklung von neuartigen und verbesserten polymeren Funktionsmaterialien und Polymerwerkstoffen bis zur Überführung in ein wirtschaftlich genutztes Produkt zu begleiten.

Medienkontakt für Plastic Logic GmbH
Rachel Lichten, Business Communications Manager
+49 351 88344-120
rachel.lichten@plasticlogic.com
Medienkontakt für das Leibniz-Institut für Polymerforschung Dresden e. V.
Kerstin Wustrack, Öffentlichkeitsarbeit
+49 351 4658-282
wustrack@ipfdd.de

Kerstin Wustrack | idw
Weitere Informationen:
http://www.plasticlogic.com
http://www.ipfdd.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neuer Super-Kunststoff mit positiver Ökobilanz
18.09.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht Bio-Kunststoffe nach Maß
18.09.2018 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Im Focus: Bio-Kunststoffe nach Maß

Zusammenarbeit zwischen Chemikern aus Konstanz und Pennsylvania (USA) – gefördert im Programm „Internationale Spitzenforschung“ der Baden-Württemberg-Stiftung

Chemie kann manchmal eine Frage der richtigen Größe sein. Ein Beispiel hierfür sind Bio-Kunststoffe und die pflanzlichen Fettsäuren, aus denen sie hergestellt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gesundheitstipps und ein virtueller Tauchgang zu Korallenriffen

20.09.2018 | Veranstaltungen

Internationale Experten der Orthopädietechnik tagen in Göttingen

19.09.2018 | Veranstaltungen

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was Einstein noch nicht wusste

20.09.2018 | Physik Astronomie

One step ahead: Adaptive Radarsysteme für smarte Fahrerassistenz

20.09.2018 | Informationstechnologie

Nanoreaktoren nach natürlichen Vorbildern gebaut

20.09.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics