Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Perowskit-Solarzellen: Es muss gar nicht perfekt sein

15.01.2018

Untersuchungen an BESSY II zeigen, warum selbst „löchrige“ Perowskit-Filme gut funktionieren

Metallorganische Perowskit-Schichten für Solarzellen werden häufig durch Rotationsschleudern auf industrierelevante Substrate aufgetragen. Die aufgeschleuderten Perowskit-Schichten weisen in der Regel zahlreiche „Löcher“ auf, erzielen aber dennoch erstaunlich hohe Wirkungsgrade.


Vereinfachter Querschnitt durch eine Perowskit-Solarzelle: Die Perowskit-Schicht weist „Löcher“ auf, dennoch werden Kurzschlüsse verhindert.

HZB

Warum solche Löcher kaum zu Kurzschlüssen und Ladungsträgerrekombination führen, hat nun ein HZB-Team um Prof. Marcus Bär in Zusammenarbeit mit der Gruppe von Prof. Henry Snaith (Universität Oxford) an BESSY II herausgefunden.

Die metallorganischen Perowskite zeigten anfänglich Wirkungsgrade von wenigen Prozent (2,2 Prozent in 2006). Aber das änderte sich rasch: Inzwischen liegt der Rekordwert bei deutlich über 22 Prozent. Eine solche Steigerung hatte bei den derzeit kommerziell dominierenden Silizium-Solarzellen mehr als 50 Jahre gedauert.

Dünnschichten aus metallorganischen Perowskiten sind preisgünstig und sie lassen sich großflächig herstellen, etwa durch Aufschleudern einer Perowskit-Lösung und anschließendem Ausheizen. Dabei verdampft das Lösungsmittel und das Material kristallisiert aus. Das macht diese Technologie sehr attraktiv.

"Löcher" im Perowskit-Film

Allerdings entsteht beim Aufschleudern auf kompakte Substrate in der Regel keine perfekte ebenmäßige Dünnschicht, sondern ein Perowskit-Film mit zahlreichen „Löchern“. Auch die Proben aus der Gruppe des Perowskit-Pioniers Henry Snaith weisen diese Löcher auf. Das Problem dabei: Diese Löcher könnten zu Kurzschlüssen in der Solarzelle führen, indem die angrenzenden Schichten der Solarzelle in Kontakt kommen. Dies müsste eigentlich den Wirkungsgrad sehr deutlich reduzieren. Diesen Effekt konnten die Forscher allerdings nicht beobachten.

Schutzschicht bildet sich von selbst

Nun haben Marcus Bär und seine Gruppe zusammen mit der Spectro-Microscopy Gruppe des Fritz-Haber-Instituts die Proben von Henry Snaith gründlich unter die Lupe genommen. Mit Hilfe von Rasterelektronenmikroskopie haben sie die Oberfläche morphologisch kartiert.

An den Stellen mit Löchern analysierten sie anschließend ortsaufgelöst mit spektromikroskopischen Methoden an BESSY II die chemische Zusammensetzung. „Wir konnten zeigen, dass selbst in den Löchern das Substrat nicht wirklich unbedeckt ist, sondern sich dort quasi als Ergebnis der Abscheidung und Kristallisation eine dünne Schicht ausbildet, die offensichtlich Kurzschlüsse verhindert“, erklärt Doktorandin Claudia Hartmann.

... und verhindert Kurzschlüsse

Dabei konnten sie auch ermitteln, dass die Energiebarriere vergleichsweise hoch ist, die die Ladungsträger überwinden müssten, um bei einem direkten Aufeinandertreffen der Kontaktschichten miteinander zu rekombinieren. „Die Elektronen-Transportschicht TiO2 und das Transportmaterial für positive Ladungsträger Spiro-MeOTAD kommen eben nicht direkt in Kontakt. Außerdem ist die Rekombinationsbarriere zwischen den Kontaktschichten ausreichend groß, so dass trotz der vielen Löcher in der Perowskit-Dünnschicht die Verluste in diesen Solarzellen gering sind“, sagt Marcus Bär.


Die Ergebnisse sind publiziert in Advanced Materials Interfaces (2018): Spatially-resolved insight into the chemical and electronic structure of solution processed perovskites – why to (not) worry about pin-holes, C. Hartmann, G. Sadoughi, R. Félix, E. Handick, H. W. Klemm, G. Peschel, E. Madej, A. B. Fuhrich, X. Liao, S. Raoux, D. Abou-Ras, D. Wargulski, Th. Schmidt, R.G. Wilks,, H. Snaith, and M. Bär

DOI: 10.1002/admi.201701420

Dr. Antonia Rötger | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Weitere Informationen:
http://www.helmholtz-berlin.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen
16.11.2018 | Karlsruher Institut für Technologie

nachricht Emulsionen masschneidern
15.11.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics