Organische Elektronik: Wie der Kontakt zwischen Kohlenstoffverbindungen und Metall gelingt

Über ihre „Sauerstoff-Ausleger“ nehmen die untersuchten organischen Verbindungen Kontakt zu den Atomen der Metalloberfläche auf. Dadurch verändern sich ihre elektronischen Eigenschaften.<br>Bild: Georg Heimel/HU Berlin<br>

Ein Problem besteht dabei stets darin, die aktive organische Schicht gut mit Metallkontakten zu verbinden. Auch für diese Aufgabe werden oft organische Moleküle eingesetzt. Allerdings war es bisher nicht möglich, genau vorherzusagen, welche Moleküle diese Aufgabe auch erfüllen. Sie mussten daher im Wesentlichen durch Ausprobieren identifiziert werden.

Nun hat ein internationales Team von Wissenschaftlern um Dr. Georg Heimel und Prof. Dr. Norbert Koch vom HZB und der Humboldt-Universität zu Berlin herausgefunden, was diese Moleküle miteinander gemeinsam haben. Ihre Ergebnisse könnten es ermöglichen, die Kontaktschichten zwischen Metallelektroden und aktivem Material in organischen Bauelementen gezielter zu verbessern.

„Wir arbeiten seit mehreren Jahren an dieser Fragestellung und konnten nun mit einer Kombination unterschiedlicher Messmethoden und theoretischer Berechnungen ein schlüssiges Bild erhalten“ sagt Georg Heimel. Dabei haben die Forscher systematisch Moleküle untersucht, deren Rückgrat aus einer Reihe von aromatischen Kohlenstoffringen gebildet wird. Die Kandidaten unterschieden sich nur in einem Detail: aus dem Rückgrat ragten unterschiedlich viele Sauerstoffatome. Diese so modifizierten Moleküle brachten sie auf die typischen Kontaktmetalle Gold, Silber und Kupfer auf.

Mit Photoelektronen-Spektroskopie (UPS und XPS) an der Synchrotronstrahlungsquelle BESSY II des HZB konnten sie die chemischen Bindungen zwischen Metalloberfläche und organischen Molekülen ermitteln sowie die Energieniveaus von Leitungselektronen messen. Den exakten Abstand der Moleküle zur Metalloberfläche bestimmten Kollegen von der Universität Tübingen mit Hilfe von X-Ray-Standing-Wave-Messungen, die sie an der Synchrotronstrahlungsquelle ESRF in Grenoble durchführten.

Dabei zeigte sich, dass die untersuchten Moleküle bei nahem Kontakt der „Sauerstoff-Ausleger“ mit einigen der Metalloberflächen ihre innere Struktur so veränderten, dass sie ihre halbleitenden Eigenschaften verloren und die metallischen Eigenschaften der Oberfläche annahmen. Trotz vergleichbarer Voraussetzungen zeigte das „nackte“ Rückgratmolekül diesen Effekt nicht. Aus der Beobachtung welche der untersuchten Moleküle sich auf welchem Metall so drastisch veränderten, konnten die Forscher nun allgemeine Richtlinien ableiten. „Wir haben jetzt eine recht genaue Vorstellung davon, wie Moleküle aussehen sollten und welche Eigenschaften sie mitbringen müssen, damit sie gut zwischen einem aktiven organischen Material und einem Metall vermitteln, also gewissermaßen einen Soft Metallic Contact formen“, meint Heimel.

An der Publikation sind auch Experten weiterer Universitäten in Deutschland sowie aus Forschungseinrichtungen in Suzhou (China), Iwate und Chiba (Japan) sowie der ESRF (Frankreich) maßgeblich beteiligt.

Online-Veröffentlichung am 17. Februar 2013 (19 Uhr MEZ) auf Nature Chemistry – DOI 10.1038/NCHEM.1572.

Weitere Informationen:
Dr. Georg Heimel
Humboldt Universität Berlin
georg.heimel@physik.hu-berlin.de
Prof. Dr. Norbert Koch
Forschungsgruppe – Molekulare Systeme
Fon.: +49 (0)30- 20 93 78 19
norbert.koch@helmholtz-berlin.de
norbert.koch@physik.hu-berlin.de
Pressestelle HZB
Dr. Antonia Rötger
Tel.: +49 (0)30-8062-43733
Fax: +49 (0)30-8062-42998
antonia.roetger@helmholtz-berlin.de

Media Contact

Dr. Ina Helms Helmholtz Zentrum

Weitere Informationen:

http://www.helmholtz-berlin.de/

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer