Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

13.11.2018

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.


Elektronenmikroskopisches Bild einer Aluminium-Ausscheidung mit atomar-großen Diffusionskanälen

© TU Graz / FELMI

Forscherinnen und Forscher der TU Graz konnten nun erstmals mit Hilfe der hochauflösenden Elektronentomographie jene Mechanismen entschlüsseln, die für das Verständnis dieser Eigenschaften entscheidend sind. Die Forschungsergebnisse wurden jetzt in Nature Materials publiziert.

Nanostrukturen verantwortlich für Material-Qualität

Um die Festigkeit, Korrosionsbeständigkeit und Schweißbarkeit von Aluminiumlegierungen zu verbessern, werden der Aluminiummatrix Legierungselemente wie Scandium oder Zirkon zugesetzt. Je nach weiterer Behandlung bilden sich danach winzige – nur wenige Nanometer große – rundliche Partikel, sogenannte Ausscheidungen.

Ihre Gestalt, ihr atomarer Aufbau sowie das „Ringen“ der Scandium- und Zirkonatome um die „besten Plätze“ im Kristallgitter entscheiden über Eigenschaften und Einsetzbarkeit des Werkstoffes.

Die Forscherinnen und Forscher der TU Graz analysierten diese Strukturen mithilfe des Austrian Scanning Transmission Electron Microscope (ASTEM) am Zentrum für Elektronenmikroskopie Graz (ZFE). Das Gerät kann hochaufgelöste Elementkartierungen von dreidimensionalen Strukturen erzeugen.

„Die so erhaltenen tomografischen Analysen lieferten überraschenderweise ein Bild, das nach bisherigem Kenntnisstand nicht interpretiert werden konnte“, so Gerald Kothleitner, Leiter der Arbeitsgruppe für analytische Transmissionselektronenmikroskopie am Institut für Elektronenmikroskopie und Nanoanalytik der TU Graz.

„Wir stellten Anomalien in den gebildeten Kern-Schale-Strukturen fest: Einerseits fanden wir in den Ausscheidungen höhere Mengen an Aluminium, als wir vermutet hatten. Andererseits entdeckten wir mit Zirkon angereicherte Kerne sowie Begrenzungszonen zwischen Kern und Schale mit fast perfekter Zusammensetzung und Kristallstruktur.“

Quantenmechanik und Monte-Carlo-Methoden liefern Antworten

Um diesem Phänomen der Selbstorganisation auf die Spur zu kommen, griffen die Forscherinnen und Forscher vom Institut für Elektronenmikroskopie und Nanoanalytik (FELMI) sowie des Instituts für Werkstoffkunde, Fügetechnik und Umformtechnik (IMAT) auf quantenmechanische Berechnungen und Simulationen zurück.

Dabei zeigte sich, dass sich das System entmischt und atomar enge Kanäle bildet, in denen die Fremdatome diffundieren können. Aufeinandertreffende Atome blockieren aber diese Kanäle und stabilisieren das System. Dissertantin Angelina Orthacker, deren Arbeit von der ACR – Austrian Cooperative Research finanziert wurde, erklärt die Bewegung der Atome anschaulich:

„Der Diffusionsprozess lässt sich vergleichen mit der Bildung von Rettungsgassen in einem verkehrsreichen Stadtgebiet mit engen Straßen: Der Verkehr schafft es, sich in Sekundenbruchteilen selbst zu organisieren, um die freie Fahrt der Einsatzfahrzeuge zu ermöglichen. Doch schon bei kleinen Beeinträchtigungen bricht die Rettungsgasse zusammen.“ Genauso verhält es sich im Inneren von Aluminiumlegierungen.

„Rettungsgassen“ fördern den Materialtransport von Scandium- und Zirkonatomen, geringe Störungen stoppen diese Transportreaktionen. Das Forschungsteam vermutet, dass die neuen Erkenntnisse zu solchen Diffusionsprozessen auch bei anderen Mehrkomponenten-Legierungen eine Rolle spielen. Deren Eigenschaften können nun noch gezielter eingestellt werden.

An der TU Graz ist dieses Forschungsprojekt im Field of Expertise „Advanced Materials Science“ verankert, einem von fünf strategischen Forschungsschwerpunkten. Beteiligte Forschende sind Mitglieder von NAWI Graz Physics.

Wissenschaftliche Ansprechpartner:

Gerald KOTHLEITNER
Ao.Univ.-Prof. Dipl.-Ing. Dr.techn.
TU Graz | Institut für Elektronenmikroskopie und Nanoanalytik
Steyrergasse 17/III, 8010 Graz
Tel.: +43 316 873 8336
gerald.kothleitner@tugraz.at

www.tugraz.at 

Originalpublikation:

Link zur Originalpublikation "Diffusion-defining atomic-scale spinodal decomposition within nanoprecipitates" in Nature Materials (Volume 17 Issue 11, November 2018)

https://www.nature.com/articles/s41563-018-0209-z

Mag. Christoph Pelzl | Technische Universität Graz

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neues Additiv schützt Holzwerkstoffe vor Flammen
14.02.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Maßgeschneiderter Materialmix für dreidimensionale Mikro- und Nanostrukturen
13.02.2019 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamanten, die besten Freunde der Quantenwissenschaft - Quantenzustand in Diamanten gemessen

Mithilfe von Kunstdiamanten gelang einem internationalen Forscherteam ein weiterer wichtiger Schritt in Richtung Hightech-Anwendung von Quantentechnologie: Erstmals konnten die Wissenschaftler und Wissenschaftlerinnen den Quantenzustand eines einzelnen Qubits in Diamanten elektrisch zu messen. Ein Qubit gilt als die Grundeinheit der Quanteninformation. Die Ergebnisse der Studie, die von der Universität Ulm koordiniert wurde, erschienen jüngst in der renommierten Fachzeitschrift Science.

Die Quantentechnologie gilt als die Technologie der Zukunft. Die wesentlichen Bausteine für Quantengeräte sind Qubits, die viel mehr Informationen verarbeiten...

Im Focus: Wasser ist homogener als gedacht

Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1% Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.

Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich...

Im Focus: Licht von der Rolle – hybride OLED ermöglicht innovative funktionale Lichtoberflächen

Bislang wurden OLEDS ausschließlich als neue Beleuchtungstechnologie für den Einsatz in Leuchten und Lampen verwendet. Dabei bietet die organische Technologie viel mehr: Als Lichtoberfläche, die sich mit den unterschiedlichsten Materialien kombinieren lässt, kann sie Funktionalität und Design unzähliger Produkte verändern und revolutionieren. Beispielhaft für die vielen Anwendungsmöglichkeiten präsentiert das Fraunhofer FEP gemeinsam mit der EMDE development of light GmbH im Rahmen des EU-Projektes PI-SCALE auf der Münchner LOPEC (19. bis 21. März 2019), erstmals in Textildesign integrierte hybride OLEDs.

Als Anbieter von Forschungs- und Entwicklungsdienstleistungen auf dem Gebiet der organischen Elektronik setzt sich das Fraunhofer FEP schon lange mit der...

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Laserverfahren für funktionsintegrierte Composites

Composites vereinen gewinnbringend die Vorteile artungleicher Materialien – und schöpfen damit zum Beispiel Potentiale im Leichtbau aus. Auf der JEC World 2019 im März in Paris präsentieren die Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein breites Spektrum an laserbasierten Technologien für die effiziente Herstellung und Bearbeitung von Verbundmaterialien. Einblicke zu Füge- und Trennverfahren sowie zur Oberflächenstrukturierung erhalten Besucher auf dem Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau AZL, Halle 5A/D17.

Experten des Fraunhofer ILT erforschen und entwickeln Laserprozesse für das wirtschaftliche Fügen, Schneiden, Abtragen oder Bohren von Verbundmaterialien –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung rund um zuverlässige Verbindungen

20.02.2019 | Veranstaltungen

LastMileLogistics Conference in Frankfurt befasst sich mit Lieferkonzepten für Ballungsräume

19.02.2019 | Veranstaltungen

Bildung digital und multikulturell: Große Fachtagung GEBF findet an der Uni Köln statt

18.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neues Trocknungsverfahren für Batterieproduktion

21.02.2019 | Energie und Elektrotechnik

Neue Eintrittspforte für Influenza-Viren entdeckt

21.02.2019 | Biowissenschaften Chemie

Streifen im Genom

21.02.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics