Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Material mit magnetischem Formgedächtnis

04.06.2019

Forschende des Paul Scherrer Instituts PSI und der ETH Zürich haben ein neues Material entwickelt, dessen Formgedächtnis durch Magnetismus aktiviert wird. Es handelt sich um einen Verbundstoff aus zwei Komponenten. Dieser behält eine einmal vorgegebene Form bei, wenn er in ein Magnetfeld gerät. Das Besondere an dem neuen Material: Anders als bisherige formerinnernde Stoffe besteht es aus einem Polymer und darin eingelagerten Tröpfchen, einer sogenannten magnetorheologischen Flüssigkeit. Anwendungsgebiete für diese neue Art Verbundstoff sind beispielsweise Medizin, Raumfahrt, Elektronik oder Robotik. Ihre Ergebnisse veröffentlichen die Forschenden jetzt im Fachmagazin Advanced Materials.

Es sieht aus wie ein Zaubertrick: Ein Magnet entfernt sich von einem schwarzen, verwundenen Band und dieses entspannt sich – ohne weitere Einwirkung (siehe Video). Was wie Magie aussieht, lässt sich mit Magnetismus erklären. Das schwarze Band besteht nämlich aus einem Verbundstoff aus zwei Komponenten: einem Polymer auf Silikonbasis und kleinen Tröpfchen aus Wasser und Glyzerin, in denen winzige Partikel aus Carbonyleisen schweben.


Paolo Testa, Erstautor der Studie, mit einem Modell der prinzipiellen Struktur des formerinnernden Materials

Foto: Paul Scherrer Institut/Mahir Dzambegovic


Laura Heyderman (links), Paolo Testa (Mitte) und Eric Dufresne mit einem Streifen des neuen Materials im Magnetfeld

Foto: Paul Scherrer Institut/Mahir Dzambegovic

Letztere sorgen für die magnetischen Eigenschaften des Materials und sein Formgedächtnis. Zwingt man den Verbundstoff mittels einer Pinzette in eine bestimmte Form und setzt ihn dann einem Magnetfeld aus, so behält er diese Form bei, selbst wenn man die Pinzette entfernt. Erst wenn man das Magnetfeld ebenfalls entfernt, nimmt das Material wieder seine ursprüngliche Form an.

Bislang bestehen vergleichbare Materialien aus einem Polymer und eingelagerten Metallpartikeln. Die Forschenden des PSI und der ETH Zürich fügten stattdessen die magnetischen Partikel mithilfe von Tröpfchen aus Wasser und Glyzerin in das Polymer. Dadurch erzeugten sie eine Dispersion, ähnlich wie sie von Milch bekannt ist. In Milch sind winzige Fetttröpfchen in einer wässrigen Lösung fein verteilt. Diese sind wesentlich für die weisse Färbung verantwortlich.

In dem neuen Material verteilen sich die Tröpfchen der Flüssigkeit mit den magnetischen Partikeln ähnlich fein. «Da es sich bei der im Polymer dispergierten magnetisch empfindlichen Phase um eine Flüssigkeit handelt, sind die Kräfte, die beim Anlegen eines Magnetfeldes erzeugt werden, wesentlich grösser als bisher bekannt», erklärt Laura Heyderman, Leiterin der Gruppe Mesoskopische Systeme am PSI und Professorin an der ETH Zürich.

Wirkt ein Magnetfeld auf den Verbundstoff, versteift dieser. «Dieses neue Materialkonzept konnte nur durch die Zusammenarbeit von Gruppen mit Expertise aus zwei völlig unterschiedlichen Bereichen – magnetischen und weichen Materialien – entstehen», so Heyderman.

Formgedächtnis durch Ausrichtung am Magnetfeld

Die Forschenden untersuchten das neue Material unter anderem mithilfe der Synchrotron Lichtquelle Schweiz SLS am PSI. Mit den damit angefertigten röntgentomografischen Aufnahmen stellten sie fest, dass sich unter Einwirkung eines Magnetfeldes die Länge der Tröpfchen in dem Polymer vergrössert und sich die Carbonyleisen-Partikel in der Flüssigkeit zumindest teilweise entlang der magnetischen Feldlinien ausrichten. Beides führt dazu, dass sich die Steifigkeit des getesteten Materials bis auf das 30-Fache erhöht.

Dass das Formgedächtnis des neuen Materials durch Magnetfelder aktiviert wird, bietet neben der grösseren Kraftentfaltung einen weiteren Vorteil. Die meisten formerinnernden Stoffe reagieren auf Temperaturschwankungen. Bei Anwendungen in der Medizin tauchen dadurch zwei Probleme auf. Erstens schadet zu grosse Hitze den körpereigenen Zellen. Zweitens lässt sich eine gleichmässige Erwärmung eines formerinnernden Gegenstands nicht immer gewährleisten. Beide Nachteile umgeht das Anschalten des Formgedächtnisses per Magnetfeld.

Mechanisch aktive Materialien für Medizin und Robotik

«Mit unserem neuen Verbundstoff haben wir einen weiteren wichtigen Schritt hin zur Vereinfachung von Bauteilen in ganz verschiedenen Anwendungsgebieten wie der Medizin oder der Robotik gemacht», freut sich Paolo Testa, Materialwissenschaftler an der ETH Zürich und am PSI sowie Erstautor der Studie. «Unsere Arbeit dient daher als Ausgangspunkt für eine neue Klasse von mechanisch aktiven Materialien.»

Für formerinnernde Stoffe sind zahlreiche Anwendungen in Medizin, Raumfahrt, Elektronik oder Robotik denkbar. So könnten Katheder, die bei minimalinvasiven Operationen durch Blutgefässe zum Operationsort im Körper geschoben werden, ihre Steifigkeit verändern. Das bietet den Vorteil, dass sie nur dann fest werden müssen, wenn das benötigt wird, und sie deshalb – zum Beispiel beim Gleiten durch ein Blutgefäss – weniger Nebenwirkungen wie Thrombosen erzeugen.

In der Raumfahrt sind formerinnernde Materialien als eine Art Reifen für Erkundungsfahrzeuge gefragt, die sich eigenständig aufblähen oder wieder zusammenfalten. In der Elektronik dienen weiche Funktionsmaterialien als flexible Strom- oder Datenleitungen, beispielsweise in sogenannten Wearables, also Geräten, die man in der Kleidung oder direkt am Körper trägt. Formgedächtnis eröffnet auch neue Möglichkeiten, beispielsweise können formerinnernde Materialien in der Robotik mechanische Bewegungen ohne einen Motor ausführen.

Ihre Ergebnisse veröffentlichen die Forschenden nun im Fachmagazin Advanced Materials.

Text: Paul Scherrer Institut/Sebastian Jutzi

Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 2100 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 407 Mio. Das PSI ist Teil des ETH-Bereichs, dem auch die ETH Zürich und die ETH Lausanne angehören sowie die Forschungsinstitute Eawag, Empa und WSL.

Wissenschaftliche Ansprechpartner:

Prof. Laura Heyderman
Forschungsgruppe Mesoskopische Systeme
Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Schweiz
Telefon: +41 56 310 26 13, E-Mail: laura.heyderman@psi.ch [Englisch, Deutsch, Französisch]

Paolo Testa
Labor für Mesoskopische Systeme, Departement Materialwissenschaft
ETH Zürich, 8093 Zürich, Schweiz
Telefon: +41 44 632 37 62, E-Mail: paolo.testa@mat.ethz.ch [Englisch, Italienisch]

Prof. Eric. R. Dufresne
Labor Weiche und Lebende Materialien, Departement Materialwissenschaft
ETH Zürich, 8093 Zürich, Schweiz
Telefon: +41 44 633 44 84, E-Mail: eric.dufresne@mat.ethz.ch [Englisch]

Originalpublikation:

Magnetically Addressable Shape-memory and Stiffening in a Composite Elastomer
Paolo Testa, Robert W. Style, Jizhai Cui, Claire Donnelly, Elena V. Borisova, Peter M. Derlet, Eric R. Dufresne and Laura J. Heyderman
Advanced Materials, 4. Juni 2019
DOI: https://dx.doi.org/10.1002/adma.201900561

Weitere Informationen:

http://psi.ch/node/28661 – Darstellung der Mitteilung auf der Webseite des PSI und Bildmaterial

Paul Scherrer Institut/Sebastian Jutzi | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Leicht, stark und zäh: Forscher der Universität Bayreuth entdecken einzigartige Polymerfasern
13.12.2019 | Universität Bayreuth

nachricht Schäden im Leichtbau erkennen durch Ultraschallsensoren
10.12.2019 | Technische Universität Braunschweig

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das feine Gesicht der Antarktis

Eine neue Karte zeigt die unter dem Eis verborgenen Geländeformen so genau wie nie zuvor. Das erlaubt bessere Prognosen über die Zukunft der Gletscher und den Anstieg des Meeresspiegels

Wenn der Klimawandel die Gletscher der Antarktis immer rascher Richtung Meer fließen lässt, ist das keine gute Nachricht. Denn dadurch verlieren die gefrorenen...

Im Focus: Virenvermehrung in 3D

Vaccinia-Viren dienen als Impfstoff gegen menschliche Pockenerkrankungen und als Basis neuer Krebstherapien. Zwei Studien liefern jetzt faszinierende Einblicke in deren ungewöhnliche Vermehrungsstrategie auf atomarer Ebene.

Damit Viren sich vermehren können, benötigen sie in der Regel die Unterstützung der von ihnen befallenen Zellen. Nur in deren Zellkern finden sie die...

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Titin in Echtzeit verfolgen

13.12.2019 | Biowissenschaften Chemie

LogiMAT 2020: Automatisierungslösungen für die Logistik

13.12.2019 | Messenachrichten

Das feine Gesicht der Antarktis

13.12.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics