Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Material macht Kältemaschinen energieeffizienter

10.04.2018

Abwärme aus der Industrie lässt sich aufgrund seiner geringen Temperatur oft nicht weiterverwenden. Ein neues Material ermöglicht ihren Einsatz in umweltfreundlichen Kälteanlagen der Gebäudetechnik. Das Kieler Forschungsteam präsentiert sein Material und die Anwendungsmöglichkeiten auf der Hannover Messe 2018.

Kälteanlagen gelten als Stromfresser, in denen noch immer umweltschädliche Kältemitteln verwendet werden, auch nach dem Verbot von Fluorchlorkohlenwasserstoffen (FCKW). Eine umweltfreundliche Alternative sind Anlagen, die stattdessen mit Wasser arbeiten.


Die molekulare Gerüststruktur des Materials: In den großen Poren kann es besonders gut Wassermoleküle aufnehmen und wieder abgeben.

Abbildung: Dirk Lenzen


Erste Tests gemeinsam mit dem Fraunhofer-Institut für Solare Energiesysteme: Mit ihrem neuen Material beschichteten die Wissenschaftlerinnen und Wissenschaftler einen herkömmlichen Wärmetauscher.

Foto: Dirk Lenzen

Ein Forschungsteam des Instituts für Anorganische Chemie der Christian-Albrechts-Universität zu Kiel (CAU) hat jetzt gemeinsam mit dem Fraunhofer-Institut für Solare Energiesysteme ISE in Freiburg ein hochporöses Material entwickelt, mit dem sich diese Kühlanlagen mit geringerem elektrischen Energieaufwand als bisher betreiben lassen. Dafür könnte bislang ungenutzte Abwärme zum Beispiel aus Fernheizungssystemen, Rechenzentren oder Solarthermie eingesetzt werden. Die Ergebnisse erschienen kürzlich im Fachmagazin Advanced Materials.

Vor allem Rechenzentren sind wahre Energiefabriken: Gewissermaßen „nebenbei“ produzieren Hochleistungscomputer jede Menge Wärme und müssen deshalb ständig gekühlt werden. So verursachen sie hohe Energie- und Stromkosten, während sie gleichzeitig ihre Abwärme ungenutzt an die Umgebung abgeben – ihre Temperatur ist zu niedrig, um sie anderweitig zu verwenden.

Doch theoretisch könnten damit spezielle Kühlanlagen, die Wasser als Kältemittel nutzen (sogenannte Adsorptionskälteanlagen), energieeffizient betrieben werden. Dafür müssten die dort verwendeten Materialien in der Lage sein, viel Wasser aufzunehmen und sich schon bei geringen Temperaturen zu regenerieren.

Umweltfreundliche und ressourcenschonende Kühlung

Diese Voraussetzungen erfüllt das poröse Material, das Professor Norbert Stock vom Institut für Anorganische Chemie mit seiner Arbeitsgruppe entdeckt hat. Damit kann ein Teil solcher Adsorptionskälteanlagen ausschließlich mit der Energie vorhandener Abwärme oder Solarthermie betrieben werden. „Damit ließe sich auch ein wichtiger Beitrag zur Nutzung erneuerbarer Energien leisten“, sagt Stock. Für diesen umweltfreundlichen Anlagetypus eignet sich ihr Material gleich doppelt gut: „Die Anlagen verbrauchen damit einerseits weniger Strom. Andererseits können wir das Material umweltschonend herstellen“, so der Chemiker weiter.

Der Kühleffekt entsteht in diesen Adsorptionskälteanlagen durch das Verdampfen von Wasser, wobei der Umgebung Wärme entzogen wird. Die Wasserdampfmoleküle werden anschließend von einem porösen Material, dem sogenannten Sorptionsmittel, adsorbiert und lagern sich in seinen Hohlräumen an. Es folgt eine Regenerationsphase: Durch die Zufuhr von thermischer Energie lösen sich die Wassermoleküle vom Material, verflüssigen sich und können im nächsten Zyklus wieder verdampfen. Auch das Material ist wieder einsetzbar.

Metall-organische Gerüstverbindungen sorgen für ideale Wechselwirkungen

Als Sorptionsmittel werden in Kältemaschinen normalerweise kristalline Zeolithe oder Silicagele verwendet, die dank ihrer porösen Struktur leicht Wasser aufnehmen können. Das Material des Kieler Forschungsteams weist besonders gute Sorptionseigenschaften auf: Es kann sehr schnell sehr viel Wasser aufnehmen und es bereits bei einer geringen Erhöhung der Temperatur schnell wieder abgeben. Das Material ist also nach kurzer Zeit „getrocknet“ und erneut einsatzbereit.

„Möglich macht das die ideale Größe seiner Poren, die für perfekte Wechselwirkungen mit den Wassermolekülen sorgen“, beschreibt Stock das Wirkungsprinzip. Die hochporöse Kristallstruktur des „CAU-10-H“ – so der offizielle Name des Materials, benannt nach Entwicklungsort, Versionsnummer und der Abkürzung von Wasserstoff – ist ein Beispiel für metall-organische Gerüstverbindungen (Englisch: „Metal Organic Frameworks“, MOF). Sie werden seit einigen Jahren intensiv in unterschiedlichsten Anwendungsbereichen getestet.

Von der Grundlagenforschung in die Anwendung

Das Kieler Forschungsteam arbeitet schon lange an der Entdeckung neuer MOFs, bislang allerdings als reine Grundlagenforschung. Für die industrielle Anwendung beschichteten sie gemeinsam mit Kolleginnen und Kollegen vom Fraunhofer ISE kommerziell erhältliche Wärmetauscher mit ihrem Material. „Die Vermessung des Wärmetauschers unter anwendungsnahen Bedingungen unterstreicht das hohe Potential dieses Materials“, berichtet Dr. Stefan Henninger vom Fraunhofer ISE. Im Labor lässt sich das Material bereits unter milden Reaktionsbedingungen, also bei 100°C mit Wasser als Lösungsmittel, in Kilogrammmengen herstellen („grüne Synthese“). „Um es für die industrielle Nutzung im größeren Maßstab zu produzieren, wollen wir in einem nächsten Schritt mit Firmen in Kontakt treten“, kündigt Stock an. Ein Patent auf ihre Herstellungsmethode haben die Partner bereits angemeldet.

Originalpublikation:
Scalable Green Synthesis and Full-Scale Test of the Metal–Organic Framework CAU-10-H for Use in Adsorption-Driven Chillers. Dirk Lenzen, Phillip Bendix, Helge Reinsch, Dominik Fröhlich, Harry Kummer, Marc Möllers, Philipp P. C. Hügenell, Roger Gläser, Stefan Henninger and Norbert Stock. Advanced Materials. https://doi.org/10.1002/adma.201705869

Vom 23.-27. April 2018 präsentiert das Forschungsteam das Material und seine Anwendungsmöglichkeiten am Stand der Universität Kiel auf der Hannover Messe (Halle 2, Research & Technology, Stand C07). Professor Norbert Stock hält dazu vor Ort am Mittwoch, 25. April, um 14.30 Uhr und 17.00 Uhr einen Vortrag mit dem Titel „Nanoporöse Materialien für moderne und umweltfreundliche Kühlung und Klimatisierung“. Zum zweiten Mal ist die Landesuniversität auf der weltgrößten Industriemesse vertreten und zeigt vielfältige Beiträge des Forschungs- und Innovationsstandortes Schleswig-Holstein: http://www.uni-kiel.de/hannovermesse

Bildmaterial steht zum Download bereit:
http://www.uni-kiel.de/download/pm/2018/2018-091-1.jpg
Bildunterschrift: Erste Tests gemeinsam mit dem Fraunhofer-Institut für Solare Energiesysteme: Mit ihrem neuen Material beschichteten die Wissenschaftlerinnen und Wissenschaftler einen herkömmlichen Wärmetauscher, wie er in handelsüblichen Kältemaschinen zu finden ist.
Foto: Dirk Lenzen

http://www.uni-kiel.de/download/pm/2018/2018-091-2.jpg
Bildunterschrift: Mit ihrem neu entwickelten Material „CAU-10-H“, hier in Pulverform, will das Kieler Forschungsteam Kühlanlagen effizienter machen.
Foto: CAU/Arbeitsgruppe Stock

http://www.uni-kiel.de/download/pm/2018/2018-091-3.png
Bildunterschrift: Verschiedene Atome (grün = Aluminium, rot = Sauerstoff, grau = Kohlenstoff) bilden zusammen die Gerüststruktur von CAU-10-H, das an der CAU entdeckt wurde. In den großen Poren kann es besonders effizient Wassermoleküle (blau) aufnehmen und wieder abgeben.
Abbildung: Dirk Lenzen

Kontakt:
Prof. Dr. Norbert Stock
Universität Kiel
Institut für Anorganische Chemie
Tel. 0431/880-1675
E-Mail: stock@ac.uni-kiel.de
Web: http://www.ac.uni-kiel.de

Dr. Stefan Henninger
Fraunhofer-Institut für Solare Energiesysteme
Materialien und Komponenten für Wärmetransformation
Tel.: 0761/4588-5104
E-Mail: stefan.henninger@ise.fraunhofer.de
Web: http://www.ise.fraunhofer.de

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text/Redaktion: Julia Siekmann
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Twitter: www.twitter.com/kieluni Facebook: www.facebook.com/kieluni, Instagram: www.instagram.com/kieluni

Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt »Nanowissenschaften und Oberflächenforschung« (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Physik, Chemie, Ingenieurwissenschaften und Life Sciences zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf http://www.kinsis.uni-kiel.de

Weitere Informationen:

http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2018-091-kalteanlagen
http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2018-091-kalteanlagen&...

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neues Additiv schützt Holzwerkstoffe vor Flammen
14.02.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Maßgeschneiderter Materialmix für dreidimensionale Mikro- und Nanostrukturen
13.02.2019 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Jet/Hüllen-Rätsel in Gravitationswellenereignis gelöst

Ein internationales Forscherteam unter Beteiligung von Astronomen des Bonner Max-Planck-Instituts für Radioastronomie hat Radioteleskope auf fünf Kontinenten miteinander verknüpft, um das Vorhandensein eines stark gebündelten Materiestrahls, eines sogenannten Jets zu beweisen, der vom Überrest des bisher einzigen bekannten Gravitationswellenereignisses ausgeht, bei dem zwei Neutronensterne miteinander verschmolzen. Bei den Beobachtungen im weltweiten Netzwerk spielte das 100-m-Radioteleskop in Effelsberg eine wichtige Rolle.

Im August 2017 wurde zum ersten Mal die Verschmelzung zweier sehr kompakter Sternüberreste, sogenannter Neutronensterne, beobachtet, deren vorhergehende...

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Materialdesign in 3D: vom Molekül bis zur Makrostruktur

Mit additiven Verfahren wie dem 3D-Druck lässt sich nahezu jede beliebige Struktur umsetzen – sogar im Nanobereich. Diese können, je nach verwendeter „Tinte“, die unterschiedlichsten Funktionen erfüllen: von hybriden optischen Chips bis zu Biogerüsten für Zellgewebe. Im gemeinsamen Exzellenzcluster „3D Matter Made to Order” wollen Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und der Universität Heidelberg die dreidimensionale additive Fertigung auf die nächste Stufe heben: Ziel ist die Entwicklung neuer Technologien, die einen flexiblen, digitalen Druck ermöglichen, der mit Tischgeräten Strukturen von der molekularen bis zur makroskopischen Ebene umsetzen kann.

„Der 3D-Druck bietet gerade im Mikro- und Nanobereich enorme Möglichkeiten. Die Herausforderungen, um diese zu erschließen, sind jedoch ebenso gewaltig“, sagt...

Im Focus: Diamanten, die besten Freunde der Quantenwissenschaft - Quantenzustand in Diamanten gemessen

Mithilfe von Kunstdiamanten gelang einem internationalen Forscherteam ein weiterer wichtiger Schritt in Richtung Hightech-Anwendung von Quantentechnologie: Erstmals konnten die Wissenschaftler und Wissenschaftlerinnen den Quantenzustand eines einzelnen Qubits in Diamanten elektrisch zu messen. Ein Qubit gilt als die Grundeinheit der Quanteninformation. Die Ergebnisse der Studie, die von der Universität Ulm koordiniert wurde, erschienen jüngst in der renommierten Fachzeitschrift Science.

Die Quantentechnologie gilt als die Technologie der Zukunft. Die wesentlichen Bausteine für Quantengeräte sind Qubits, die viel mehr Informationen verarbeiten...

Im Focus: Wasser ist homogener als gedacht

Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1% Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.

Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mobile World Congress: Bundesamt für Strahlenschutz rät zu Handys mit geringem SAR-Wert

22.02.2019 | Veranstaltungen

Unendliche Weiten: Geophysiker nehmen den Weltraum ins Visier

21.02.2019 | Veranstaltungen

Tagung rund um zuverlässige Verbindungen

20.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Zeit atomarer Vorgänge auf der Spur

22.02.2019 | Physik Astronomie

Wie Korallenlarven sesshaft werden

22.02.2019 | Biowissenschaften Chemie

Ökologische Holz-Hybridbauweisen für den Geschossbau

22.02.2019 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics