Neuer Fitnesstest für Werkstoffe und Bauteile im solarthermischen Kraftwerk

Oberflächenoxide eines Stahls nach 2000 Stunden in 565° Celsius heißer Salzschmelze. Einerseits kann die Oxidschicht eine Schutzfunktion übernehmen, andererseits können sich zwischen den Kristallen unter Belastung leicht Risse bilden, die den Prozess der Spannungsrisskorrosion einleiten. Die Oxidschicht korrekt zu bewerten, ist Aufgabe der Werkstoffforschung.<br>© Fraunhofer IWM<br>

Salzschmelzen eignen sich hervorragend, um in solarthermischen Kraftwerken Wärme zu speichern. Der Nachteil: Sie greifen die Komponenten des Energiekreislaufs an, was ihren breiten Einsatz behindert.

Das Freiburger Fraunhofer-Institut für Werkstoffmechanik IWM hat ein System für die Qualifizierung von Materialien und Komponenten im Kontakt mit Salzschmelzen entwickelt: Materialhersteller, Anlagenbauer und Betreiber von solarthermischen Kraftwerken können so zuverlässigere und langlebigere Bauteile entwickeln.

Die zur Energiespeicherung eingesetzten sogenannten Solarsalze sind meist Mischungen aus Natrium- und Kaliumnitrat, die höhere Temperaturen als bisher genutzte Thermoöle ertragen können – bis zu 560 °C. Damit erreichen solarthermische Kraftwerke höhere Wirkungsgrade. Auch die Kosten und die Wärmespeicherkapazität sprechen für die Salze.

Die Crux ist allerdings die chemische Aggressivität der Salze in Kombination mit hohen Temperaturen und mechanischen Beanspruchungen. Darunter leiden Rohre, Ventile, Tanks, Pumpen und Wärmetauscher. Denn durch die dauerhafte komplexe Beanspruchung tritt neben dem reinen korrosionsbedingten Materialverlust auch Rissbildung und Risswachstum auf. Diese sogenannte Spannungsrisskorrosion kann zu Leckage bis hin zum kompletten Versagen von Kraftwerkskomponenten führen.

Auf Basis einer CERT-Prüfung (Constant Extension Rate Test) können am Fraunhofer IWM nun Werkstoffe im Kontakt mit dem Energiespeicher Salzschmelze gleichzeitig korrosiv, thermisch und mechanisch bewertet werden. Ergänzend wird der Verschleiß durch strömende Salzschmelzen in einer Strömungskammer untersucht. »Das Neuartige an unserer Methode ist, dass wir die kompletten Belastungen, die eine Komponente aus dem Energiespeicher- beziehungsweise Wärmetransportsystem erfährt, kombiniert abbilden und bewerten können«, erklärt Dr. Elsa Piedra, Projektleiterin am Fraunhofer IWM. So können neue Werkstoffe für den Einsatz in solarthermischen Kraftwerken einem Härtetest unterzogen werden.

Ebenso können verschiedene Salze hinsichtlich ihrer Verträglichkeit mit der Anlage untersucht werden. »Unsere Anlage ist so aufgebaut, dass wir Aufschlüsse zu den Mechanismen der Korrosion von Stahl im Kontakt mit Salzschmelzen bekommen. Insbesondere der Ablauf der gefährlichen Variante Spannungsrisskorrosion ist bis heute noch kaum untersucht, geschweige denn verstanden« ergänzt Piedra.

Ziel der Wissenschaftler am Fraunhofer IWM ist mit geeigneten Werkstoffen dem vielversprechenden Energiespeicher Salz zum Durchbruch zu verhelfen.

Media Contact

Thomas Götz Fraunhofer-Institut

Weitere Informationen:

http://www.iwm.fraunhofer.de/

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer