Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanotechnologie: Nanoläufer im Laserblick

22.09.2015

Ein winziger Stab aus Gold wandert über eine mit DNA präparierte Oberfläche und lässt sich dabei Schritt für Schritt verfolgen

Die Nanotechnologie lernt laufen. Forscher des Max-Planck-Instituts für Intelligente Systeme in Stuttgart lassen einen Nano-Goldzylinder, den sie mit DNA-Füßchen versehen haben, über eine mit DNA gespickte Oberfläche wandern.


Ein Goldzylinder mit DNA-Füßen kann über DNA-gespickte Hügel aus gefalteten DNA-Fäden klettern. Der zweite Zylinder (rot) dient als Referenzpunkt für die Beobachtung des Nanoläufers.

© MPI für Intelligente Systeme, Stuttgart

Dabei verfolgen sie die Bewegung des Nanoläufers, der kleiner ist als die optische Auflösungsgrenze, indem sie auf seiner Oberfläche Plasmonen anregen – das sind Quasiteilchen aus vielen Elektronen. Da diese Anregung den Lichtstrahl verändert, konnten sie den Nanoläufer auf diese Weise beobachten. Die Forscher wollen solche beweglichen plasmonischen Nanoobjekte vor allem nutzen, um die Wechselwirkung kleinster Teilchen mit Licht zu studieren.

Nanomaschinen, also molekülgroße, mechanische Konstrukte, könnten künftig diverse Aufgaben etwa in der Medizin, in der Informationsverarbeitung, der Chemie oder der wissenschaftlichen Forschung übernehmen – so die Szenarien der Nanotechnologie. Doch Miniaturmaschinen, die Tausende mal kleiner sind als der Durchmesser eines menschlichen Haares, stellen Wissenschaftler vor enorme Schwierigkeiten: Zunächst bestehen die einzelnen Komponenten nur aus einigen Atomen.

Solche Bauteile lassen sich kaum gezielt bearbeiten, geschweige denn präzise zusammensetzen. Zudem müssen die Maschinen dann irgendwie mit Energie versorgt werden, und schließlich können die Forscher nicht eben nachsehen, ob ihr Gerät auch funktioniert. Die dafür nötigen Mikroskopietechniken sind aufwändig und erfordern zum Beispiel Vakuumkammern, in denen die Nanogeräte zerstört werden. Forscher um Laura Na Liu haben am Max-Planck-Institut für Intelligente Systeme in Stuttgart nun einen Nanoläufer konstruiert, den sie mithilfe eines nano-optischen Effekts beobachten.

Der Körper des Nanoläufers besteht aus einem 35 Nanometer langen und zehn Nanometer dicken Goldzylinder. „Die Oberfläche des Zylinders ist mit vielen identischen DNA-Strängen gespickt, die quasi als Füße dienen“, erklärt die Projektleiterin Liu. Die DNA-Stränge stehen dabei wie die Borsten einer Flaschenbürste von dem Goldzylinder ab. „Durch sie kann der Goldzylinder Kontakt zum Untergrund herstellen und sich fortbewegen.“

Der Nanoläufer wandert über einen Teppich von DNA-Fäden

Der Laufsteg für den Goldzylinder besteht ebenfalls aus DNA, sogenannter DNA-Origami. Aus diesen gefalteten DNA-Fäden ragen kurze Stränge wie die Fasern eines Teppichs in Längsreihen senkrecht empor. Diese stehen parallel zum Zylinder und dienen als Halterungen für die Füßchen des Läufers. Die Basenkombination unterscheidet sich im DNA-Teppichs von Reihe zu Reihe. Die Stränge Jede Reihe entspricht einer Station. Zunächst ist der Läufer mit zwei Reihen verbunden, die Halterungen der anderen Reihen sind für seine Füße blockiert.

„Rollend bewegt der Läufer sich vorwärts, von Station zu Station“, so Liu. Damit er das macht, müssen die Forscher der Flüssigkeit, in welcher der Lauf stattfindet, ständig kurze, auf die DNA der einzelnen Reihen abgestimmte DNA-Schnipsel zufügen. Diese brechen dann zunächst eine Reihe von Verbindungen zwischen den Füßchen des Läufers und der DNA des Untergrunds auf und blockieren die Halterungen dieser Station. Auf der gegenüberliegenden Seite des Läufers wird wiederum eine bis dahin blockierte Reihe freigegeben – und die Füßchen des Zylinders können sich dort anheften.

„Je nach Art der Zugabe bewegt sich der Läufer in die eine oder andere Richtung“, erläutert Liu. „Die Bewegung kommt dabei wie bei natürlichen molekularen Motoren zustande: Die Flüssigkeit bewegt den Zylinder inklusive Füßchen durch thermische Bewegung hin und her“. Da die Füßchen immer nur auf einer Seite neu andocken, schreitet der Läufer langsam fort. Die Schrittlänge beträgt dabei sieben Nanometer, nicht einmal ein Hunderttausendstel der Schrittlänge einer Waldameise.

Mithilfe der Plasmonenresonanz lässt sich der Lauf des Nanozylinders verfolgen

Um den Lauf des Winzlings zu verfolgen, nutzten die Forscher einen nanooptischen Effekt namens Plasmonenresonanz. Plasmonen sind Quasiteilchen aus vielen Elektronen, die unter anderem in Metallen vorkommen und dort hin- und herschwingen. „Strahlt man spezielles Licht auf den Nanozylinder, kann dieses mit den Plasmonen im Gold wechselwirken“, erklärt Liu. „Dabei wird das Licht teilweise absorbiert – man spricht dann von Plasmonenresonanz.“ Indem die Forscher den Lichtstrahl analysieren, können sie dieses Phänomen messen.

Um aber auch festzustellen, wo genau sich der Zylinder befindet, musste das Team noch einen zweiten, unbeweglichen Nano-Goldzylinder an der Unterseite des DNA-Origamis anbringen. Dieser dient, vereinfacht gesagt, als Referenzpunkt. Gemeinsam bewirken die beiden Zylinder nämlich eine Änderung der zirkularen Polarisation des Lichtstrahls: Licht besteht aus einem schwingenden elektromagnetischen Feld. Die Polarisation entspricht der Schwingungsrichtung des Feldes; in zirkularpolarisiertem Licht dreht sich diese entweder im oder gegen den Uhrzeigersinn. Wie sich die zirkulare Polarisation bei der Plasmonenresonanz ändert, verrät den Forschern die Position des Läufers.

„Auf diesem Weg konnten wir jeden einzelnen Schritt nachvollziehen. Deshalb ist der Läufer nicht nur ein bewegliches Element, sondern gibt gleichzeitig auch Auskunft über seinen Standort“, so Liu. Eine aufwändige Mikroskopie-Technik, um den plasmonischen Läufer zu beobachten, war nicht mehr notwendig. Liu sieht in ihm einen Vorreiter einer „neuen Generation von Nanomaschinen mit maßgeschneiderten optischen Eigenschaften“.

Mit diesem Werkzeug will die Forscherin nun sowohl die Wechselwirkung von Licht und Materie im ganz Kleinen als auch das mechanische Verhalten von Nanoteilchen weiter erforschen. Denn damit der Gold-Läufer tatsächlich irgendwann sein Ziel erreicht und diverse Aufgaben erledigt, muss er nicht nur auf DNA-Origami noch einige Schritte nach vorne machen.


Ansprechpartner

Laura Na Liu
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-1838

E-Mail: laura.liu@is.mpg.de


Annette Stumpf
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-3089

Fax: +49 711 689-1932

E-Mail: stumpf@is.mpg.de


Originalpublikation

Chao Zhou, Xiaoyang Duan und Na Liu

A plasmonic nanorod that walks on DNA origami

Nature Communications, 25. August 2015; DOI: 10.1038/ncomms9102

Laura Na Liu | Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neuartige und vielseitig einsetzbare Kunststoffzusätze
24.06.2019 | Friedrich-Schiller-Universität Jena

nachricht Innovatives Pulver revolutioniert 3D-Metalldruck
19.06.2019 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Partielle Mondfinsternis am 16./17. Juli 2019

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Wie im letzten Jahr findet auch 2019 eine in den späten Abendstunden in einer lauen Sommernacht gut zu beobachtende Mondfinsternis statt, und zwar in der Nacht vom 16. auf den 17. Juli. Die Finsternis ist zwar nur partiell - der Mond tritt also nicht vollständig in den Erdschatten ein - es ist aber für die nächsten Jahre die einzige gut sichtbare Mondfinsternis im deutschen Sprachraum.

Am Dienstagabend, den 16. Juli, wird ein kosmisches Schauspiel zu sehen sein: Der Vollmond taucht zu einem großen Teil in den Schatten der Erde ein, es findet...

Im Focus: Fraunhofer IDMT zeigt akustische Qualitätskontrolle auf der Fachmesse für Messtechnik »Sensor + Test 2019«

Das Ilmenauer Fraunhofer-Institut für Digitale Medientechnologie IDMT präsentiert vom 25. bis 27. Juni 2019 am Gemeinschaftsstand der Fraunhofer-Gesellschaft (Stand 5-248) seine neue Lösung zur berührungslosen, akustischen Qualitätskontrolle von Werkstücken und Bauteilen. Da die Prüfung zerstörungsfrei funktioniert, kann teurer Prüfschrott vermieden werden. Das Prüfverfahren wird derzeit gemeinsam mit verschiedenen Industriepartnern im praktischen Einsatz erfolgreich getestet und hat das Technology Readiness Level (TRL) 6 erreicht.

Maschinenausfälle, Fertigungsfehler und teuren Prüfschrott reduzieren

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Meeresleuchten, Klimawandel, Küstenmeere Afrikas – Spannende Vielfalt bei „Warnemünder Abenden 2019“

24.06.2019 | Veranstaltungen

Plastik: Mehr Kreislauf gegen die Krise gefordert

21.06.2019 | Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Molekulare Schere stabilisiert das Zell-Zytoskelett

24.06.2019 | Biowissenschaften Chemie

Neues „Intelligent Edge Data Center“ bringt Smart Industries auf nächstes Level

24.06.2019 | Unternehmensmeldung

Meeresleuchten, Klimawandel, Küstenmeere Afrikas – Spannende Vielfalt bei „Warnemünder Abenden 2019“

24.06.2019 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics