Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanostrukturen aus bisher unmöglichem Material

06.03.2018

Wie kombiniert man verschiedene Elemente in einem Kristall? An der TU Wien wurde nun eine Methode entwickelt, bisher unerreichbar hohe Anteile von Fremdatomen in Kristalle einzubauen.

Wer einen Kuchen bäckt, kann die Zutaten in fast beliebigem Mengenverhältnis zusammenfügen – sie werden sich immer mischen lassen. In der Materialchemie ist die Sache komplizierter.


Nanostrukturen aus bisher unmöglichem Material

TU Wien


Michael Seifner (l.) und Sven Barth (r.)

TU Wien

Oft möchte man die physikalischen Eigenschaften eines Materials verändern, indem man einen gewissen Anteil eines zusätzlichen Elements hinzufügt. Allerdings gelingt es nicht immer, die gewünschte Menge in die Kristallstruktur des Materials einzubauen.

An der TU Wien entwickelte man nun eine neue Methode, mit der bisher nicht erreichbare Mischungsverhältnisse zwischen Germanium und gewünschten Fremdatomen erreicht werden können. So entstehen neue Materialien mit deutlich veränderten Eigenschaften.

Mehr Zinn oder Gallium in den Germanium-Kristall

„In einen Kristall gezielt Fremdatome einzubauen, um seine Eigenschaften zu verbessern, ist eigentlich eine Standardmethode“, sagt Sven Barth vom Institut für Materialchemie der TU Wien. Unsere moderne Elektronik beruht auf Halbleitern mit bestimmten Zusätzen – ein Beispiel dafür sind etwa Siliziumkristalle, in die Fremdatome wie Phosphor oder Bor eingebaut werden.

Auch das Halbleitermaterial Germanium sollte seine Eigenschaften grundlegend ändern und sich eher wie ein Metall verhalten, wenn man eine ausreichende Menge an Zinn beimengt – das war bereits bekannt. Doch in der Praxis war das bisher nicht zu erreichen.

Naiv betrachtet könnte man einfach versuchen, die beiden Elemente stark zu erhitzen, sie in flüssiger Form gut durchzumischen und dann erstarren zu lassen, wie man das seit Jahrtausenden macht, um einfache Metall-Legierungen herzustellen. „Diese einfache thermodynamische Methode versagt aber in diesem Fall, weil sich die beigemischten Atome nicht effizient ins Gittersystem des Kristalls einfügen“, erklärt Sven Barth.

„Je höher die Temperatur, umso beweglicher sind die Atome im Material. Das kann dazu führen, dass sich diese Fremdatome nach einem erfolgreichen Einbau aus dem Kristall ausscheiden und im Inneren wieder nur eine sehr geringe Konzentration dieser Atome zu finden ist.“

Sven Barths Team entwickelte daher einen neuen Zugang, der ein besonders schnelles Kristallwachstum mit sehr niedrigen Prozesstemperaturen verbindet. Dabei wird bei der Entstehung des Kristalls laufend die richtige Menge der Fremdatome eingebaut. Die Kristalle wachsen in Form von Drähtchen oder Stäbchen im Nano-Format, und zwar bei deutlich geringeren Temperaturen als bisher, nämlich bei bloß 140-230 °C.

„Dadurch sind die eingebauten Atome von Anfang an weniger beweglich, die Diffusionsprozesse sind langsam, die meisten Atome bleiben dort, wo man sie haben will“, erklärt Barth dessen Forschung in diesem Bereich vom FWF finanziert wird.

Mit dieser Methode gelang es bis zu 28% Zinn bzw. 3,5% Gallium in Germanium einzubauen. Das ist erheblich mehr als bisher durch gewöhnliche thermodynamische Kombination dieser Materialien möglich war – nämlich das 30- bis 50-fache.

Laser, LEDs, Elektronik-Bauteile

Für die Mikroelektronik eröffnet das neue Möglichkeiten: „Germanium ist einerseits gut mit bestehender Silizium-Technologie kombinierbar, und der Zusatz von Zinn bzw. Gallium in solch hohen Konzentrationen bietet andererseits hoch interessante opto-elektronische Anwendungsmöglichkeiten“, sagt Sven Barth. Die Materialien wären etwa für Infrarot-Laser, für Photodetektoren oder neuartige LEDs im Infrarot-Bereich einsetzbar, da sich die physikalischen Eigenschaften des Germaniums durch diese Zusätze signifikant ändern.

Originalpublikationen:
Seifner et al., ACSNano 2018, 12, 1236-1241. DOI: 10.1021/acsnano.7b07248 https://pubs.acs.org/doi/pdf/10.1021/acsnano.7b07248
Seifner et al., Chem. Mater., 2017, 29 (22), pp 9802–9813, DOI: 10.1021/acs.chemmater.7b03969 https://pubs.acs.org/doi/10.1021/acs.chemmater.7b03969

Kontakt:
Dr. Sven Barth
Institut für Materialchemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-165207
sven.barth@tuwien.ac.at

Weitere Informationen:

http://www.barth-group.com Forschungsgruppen-Homepage

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neues Additiv schützt Holzwerkstoffe vor Flammen
14.02.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Maßgeschneiderter Materialmix für dreidimensionale Mikro- und Nanostrukturen
13.02.2019 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wasser ist homogener als gedacht

Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1% Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.

Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich...

Im Focus: Licht von der Rolle – hybride OLED ermöglicht innovative funktionale Lichtoberflächen

Bislang wurden OLEDS ausschließlich als neue Beleuchtungstechnologie für den Einsatz in Leuchten und Lampen verwendet. Dabei bietet die organische Technologie viel mehr: Als Lichtoberfläche, die sich mit den unterschiedlichsten Materialien kombinieren lässt, kann sie Funktionalität und Design unzähliger Produkte verändern und revolutionieren. Beispielhaft für die vielen Anwendungsmöglichkeiten präsentiert das Fraunhofer FEP gemeinsam mit der EMDE development of light GmbH im Rahmen des EU-Projektes PI-SCALE auf der Münchner LOPEC (19. bis 21. März 2019), erstmals in Textildesign integrierte hybride OLEDs.

Als Anbieter von Forschungs- und Entwicklungsdienstleistungen auf dem Gebiet der organischen Elektronik setzt sich das Fraunhofer FEP schon lange mit der...

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Laserverfahren für funktionsintegrierte Composites

Composites vereinen gewinnbringend die Vorteile artungleicher Materialien – und schöpfen damit zum Beispiel Potentiale im Leichtbau aus. Auf der JEC World 2019 im März in Paris präsentieren die Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein breites Spektrum an laserbasierten Technologien für die effiziente Herstellung und Bearbeitung von Verbundmaterialien. Einblicke zu Füge- und Trennverfahren sowie zur Oberflächenstrukturierung erhalten Besucher auf dem Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau AZL, Halle 5A/D17.

Experten des Fraunhofer ILT erforschen und entwickeln Laserprozesse für das wirtschaftliche Fügen, Schneiden, Abtragen oder Bohren von Verbundmaterialien –...

Im Focus: Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen

Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen.

In heutigen Datenspeichern müssen magnetische Domänen mit Hilfe eines externen Magnetfeld umgeschaltet werden, welches durch elektrischen Strom erzeugt wird....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung rund um zuverlässige Verbindungen

20.02.2019 | Veranstaltungen

LastMileLogistics Conference in Frankfurt befasst sich mit Lieferkonzepten für Ballungsräume

19.02.2019 | Veranstaltungen

Bildung digital und multikulturell: Große Fachtagung GEBF findet an der Uni Köln statt

18.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Eine vulkanische Riesenparty und ihr frostiger Kater danach

20.02.2019 | Geowissenschaften

Lückenlose Weltkarte der Baumarten-Vielfalt: neues statistisches Modell füllt weiße Flächen

20.02.2019 | Biowissenschaften Chemie

Jacobs University Forscher entdecken neue Klasse von heterogenen Katalysatoren auf Edelmetallbasis

20.02.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics