Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanodrähte für die (Opto-)Elektronik der Zukunft

17.06.2010
Am Anfang stand eine Machbarkeitsstudie zur Herstellung farbig fluoreszierender Dünnschichten für optische Sicherheitsanwendungen. Daraus wurde ein EU-Projekt zur Entwicklung neuartiger Gassensoren. Inzwischen ist es Empa-Forschern und -Forscherinnen gelungen, komplexe organische Nanodrähte zu synthetisieren und leitend miteinander zu verbinden, ein erster Schritt zum Bau künftiger elektronischer und optoelektronischer Bauteile.

Organische Halbleiter sind viel versprechende Kandidaten für die Herstellung billiger, grossflächiger und flexibler optischer und mikro- bis nanoelektonischer Bauteile wie Transistoren, Dioden, und Sensoren. Vorausgesetzt es gelingt, die Komponenten elektrisch leitend miteinander zu verbinden, sie also in Schaltkreise einzubinden. Empa-Forscher und -Forscherinnen haben ein neues Verfahren entwickelt, mit dem sich einfache Netzwerke aus organischen Nanodrähten herstellen lassen.

Der Ursprung: das EU-Projekt «PHODYE»

Nachdem der spanische Physiker Angel Barranco nach einem dreijährigen Forschungsaufenthalt an der Empa nach Valencia zurückgekehrt war, initiierte er das EU-Projekt «PHODYE» – unter anderem mit seinen ehemaligen Empa-KollegInnen. Ziel ist, hoch sensible optische Gassensoren zu entwickeln, beispielsweise um Strassenverkehrsemissionen zu überwachen oder um Laborpersonal sowie Bergwerkarbeiter frühzeitig vor Giftstoffen zu warnen. Die Sensoren basieren auf fluoreszierenden Dünnschichten, die beim Kontakt mit bestimmten Gasmolekülen Farbe und Fluoreszenz ändern.

«Uns schwebte zunächst eine Art elektronischer Schlüssel für Sicherheitsanwendungen vor, der nur auf bestimmte optische Bedingungen reagiert», erklärt der Empa-Physiker Pierangelo Gröning. Hierfür waren transparente, stark fluoreszierende Dünnschichten gefragt. Deswegen entwickelten Gröning und Barranco ein Plasmaabscheidungsverfahren, um fluoreszierende Farbstoffmoleküle wie Metallo-Porphyrine, Perylene und Phthalocyanine unversehrt und in hoher Konzentration in SiO2- oder TiO2-Schichten einzulagern.

Schnell zeigte sich: Lagern sich bestimmte Gasmoleküle an die Farbstoffteilchen in den Dünnschichten an, fluoreszieren diese Teilchen in einer anderen Wellenlänge, das heisst in einer anderen Farbe, und die Dünnschicht ändert dadurch ihre Farbe. Kommen verschiedene Farbstoffe zum Einsatz, lassen sich unterschiedliche, für den Menschen gefährliche Gase bereits in kleinsten Mengen detektieren.

Überraschend vielseitig einsetzbar

Für viele Sensoranwendungen ist allerdings auch ein möglichst schnelles Ansprechverhalten wichtig – was sich mit kompakten Plasmafarbschichten kaum erfüllen lässt. Anders mit möglichst offenporigen Schichten – etwa in Form eines «Teppichflors» im Nanomassstab –, von denen sich die WissenschaftlerInnen zudem weitere Vorteile erhofften: Durch sie erhöht sich die Adsorptionsfläche für die nachzuweisenden Gasmoleküle, und die Diffusionswege verkürzen sich; dadurch sollte der Sensor deutlich schneller reagieren. Die Physikerin Ana Borras entwickelte daraufhin ein neues Vakuumdepositionsverfahren zur Synthese organischer Nanodrähte.

Inzwischen können die Empa-Forschenden sogar – je nach Ausgangsmolekül und Versuchsbedingungen – Nanodrähte mit den unterschiedlichsten Eigenschaften herstellen. Nanodrähte aus Metallo-Phthalocyanin-Molekülen weisen etwa einen Durchmesser von lediglich 10 bis 50 Nanometer und eine Länge von bis zu 100 Mikrometer auf. Das Besondere und Unerwartete am neuen Verfahren: Bei genauer Kontrolle von Substrattemperatur, Molekülfluss und Substratvorbehandlung zeigen die organischen Nanodrähte über ihre gesamte Länge einen bislang unerreichten perfekten monokristallinen Aufbau.

Schon nach den ersten elektronenmikroskopischen Untersuchungen war Gröning klar, dass das neue Verfahren nicht nur Nanodrähte für die beabsichtigten Gassensoren liefert, sondern auch komplexe «Nanodraht-Schaltkreise» für (opto-)elektronische Anwendungen wie Solarzellen, Transistoren und Dioden ermöglicht. Denn verschiedenartige Nanodrähte können miteinander beliebig zu Netzwerken mit den unterschiedlichsten Eigenschaften kombiniert werden, wie Gröning & Co. unter anderem in der Fachzeitschrift «Advanced Materials» berichteten.

Der Trick dabei: Die auf der Oberfläche gewachsenen Nanodrähte werden in einem zweiten Schritt durch ein Sputter-Beschichtungsverfahren mit Silber-Nanopartikeln «dekoriert»; ein Target – in diesem Fall ein Silberfestkörper – wird mit energiereichen Ionen beschossen, wodurch sich Silberatome herauslösen, in die Gasphase übergehen und auf den Nanodrähten ablagern. Und darauf kann das Empa-Team in einem letzten Schritt weitere Nanodrähte wachsen lassen – die mit dem Ursprungsdraht via Silberpartikel erst noch elektrisch leitend verbunden sind: die Grundstruktur eines verzweigten Schaltkreises im Nanomassstab.

Der erste Schritt von der Mikro- zur Nanoelektronik

Erste Leitfähigkeitsmessungen in einem speziellen 4-Spitzen-Rastertunnelmikroskop im Ultrahochvakuum haben selbst die kühnsten Erwartungen übertroffen: Das Material besitzt eine aussergewöhnlich hohe Qualität. «Das eröffnet uns die Möglichkeit, bald auch organisches Material als Halbleiter herzustellen», ist Gröning zuversichtlich. «Und dies erst noch mit einem einfachen und günstigen Verfahren.» Inzwischen gelingt es den ForscherInnen, immer komplexere Nano-Drahtstrukturen zu synthetisieren und diese mit viel Geschick und Fingerspitzengefühl zu verbinden.

Zum Beispiel Nanodrähte, die abschnittweise aus unterschiedlichen Ausgangsmolekülen bestehen. Verwendet man dabei Moleküle, die entweder nur positive oder nur negative Ladungen transportieren können, entsteht eine Diode, die den Strom nur in eine Richtung «durchlässt». Gut möglich, spekuliert Gröning, dass daraus eines Tages Bauteile für die Nanoelektronik und Nanophotonik entstehen.

Literaturhinweis
A. Borras, O. Gröning, J. Köble, P. Gröning: Organic Nanowires: Connecting Organic Nanowires, Advanced Materials, vol. 21, issue 47, pp. 4816 – 4819; DOI: 10.1002/adma.200901724
Weitere Informationen
Dr. Pierangelo Gröning, nanotech@surfaces, Tel. +41 44 823 40 04 / +41 33 228 52 15, pierangelo.groening@empa.ch

Sabine Voser | idw
Weitere Informationen:
http://www.empa.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Die steifsten Leichtbaumaterialien überhaupt
12.12.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Künstliches Perlmutt nach Mass
12.12.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: Quantenkryptographie ist bereit für das Netz

Wiener Quantenforscher der ÖAW realisierten in Zusammenarbeit mit dem AIT erstmals ein quantenphysikalisch verschlüsseltes Netzwerk zwischen vier aktiven Teilnehmern. Diesen wissenschaftlichen Durchbruch würdigt das Fachjournal „Nature“ nun mit einer Cover-Story.

Alice und Bob bekommen Gesellschaft: Bisher fand quantenkryptographisch verschlüsselte Kommunikation primär zwischen zwei aktiven Teilnehmern, zumeist Alice...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab

Zusammen mit einem Blutdrucksenker hemmt ein häufig verwendetes Diabetes-Medikament gezielt das Krebswachstum – dies haben Forschende am Biozentrum der Universität Basel vor zwei Jahren entdeckt. In einer Folgestudie, die kürzlich in «Cell Reports» veröffentlicht wurde, berichten die Wissenschaftler nun, dass dieser Medikamenten-Cocktail die Energieversorgung von Krebszellen kappt und sie dadurch abtötet.

Das oft verschriebene Diabetes-Medikament Metformin senkt nicht nur den Blutzuckerspiegel, sondern hat auch eine krebshemmende Wirkung. Jedoch ist die gängige...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungsnachrichten

Rittal heizt ein in Sachen Umweltschutz - Rittal Lackieranlage sorgt für warme Verwaltungsbüros

14.12.2018 | Unternehmensmeldung

Krankheiten entstehen, wenn das Netzwerk von regulatorischen Autoantikörpern aus der Balance gerät

14.12.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics