Nanobauteile nach Maß

Nanospiralen als Lichtantennen: Die winzigen Nanostrukturen lassen sich mit einer neuen Methode sehr präzise und in großer Zahl herstellen. Durch die Abmessungen und die Zusammensetzung der Helices lässt sich steuern, welche Lichtfarbe sie absorbieren. Sie eignen sich um zirkular polarisiertes Licht zu filtern.<br><br>© Andrew G. Mark<br>

Nanomaschinen nehmen den Weg von der Vision zur Wirklichkeit, und Forscher des Max-Planck-Instituts für Intelligente Systeme in Stuttgart helfen ihnen dabei jetzt einen guten Schritt voran. Sie haben eine Methode entwickelt, Materialen mit sehr unterschiedlichen chemischen und physikalischen Eigenschaften zu vielfältigen Nanostrukturen mit ungewöhnlichen Formen zu kombinieren.

Auf einer gekühlten und drehbaren Scheibe züchteten die Wissenschaftler um Peer Fischer aus dem Dampf der Komponenten unter anderem Antennen für sichtbares Licht. Das Verfahren präpariert die Strukturen nicht nur exakter als bisherige Methoden, mit ihm lassen sich in kurzer Zeit parallel auch mehrere Milliarden Nanoelemente produzieren.

Einige Vorstellungen, was die Nanotechnologie einmal leisten soll, sind kühn: Winzige Roboter könnten im menschlichen Körper Medikamente zu Krankheitsherden transportieren oder klein genug sein, um in einer menschlichen Zelle zu operieren. Nanomotoren oder Sensoren für Licht oder für Giftstoffe sollen etwa 2.000-mal kleiner sein, als ein menschliches Haar dick ist. Und Information würde auf Datenträgern um ein vielfaches dichter gepackt, als es heute schon möglich ist. Manchen dieser Ziele kommt die Forschung schon recht nah. Nun bringt ein Team um Peer Fischer, Leiter einer Forschungsgruppe am Max-Planck-Institut für Intelligente Systeme, sie noch näher dorthin: „Wir haben einen vielseitigen, präzisen und effizienten Prozess entwickelt, in dem sich dreidimensionale Nanostrukturen aus verschiedenen Materialien nach Maß fertigen lassen“, sagt Peer Fischer. „Bislang ließen sich Strukturen unter 100 Nanometern nur in sehr symmetrischen, vor allem kugeligen Formen erzeugen.“

Mit ihrer neuen Methode stellten die Forscher nanoskopische Stäbchen, Haken, Schrauben und Zickzack-Strukturen her und verarbeiteten dabei Materialien mit sehr unterschiedlichen physikalischen Eigenschaften – Metalle, Halbleiter, magnetische Materialien und Isolatoren. Als ein Beispiel für mögliche Anwendungen produzierten die Forscher Helices aus Gold, die sich als Nanoantennen für Licht eignen. Welche Lichtfarbe die Antennen absorbieren, lässt sich über deren Form und Zusammensetzung steuern. Mit ihnen lässt sich zirkular polarisiertes Licht filtern, das etwa bei der Projektion von 3D-Filmen verwendet wird. In solchem Licht dreht sich die Schwingungsebene der elektromagnetischen Wellen – nichts anderes ist Licht – im oder gegen den Uhrzeigersinn. Für welche Drehrichtung eine Nanoantenne aus der Fabrikation der Stuttgarter Forscher empfindlich ist, hängt von der Drehung der Goldhelix ab.

Auf Goldpartikeln wachsen aus einem Dampfstrom Nanostrukturen
Die genaue Kontrolle über Form und Zusammensetzung der Nanobauteile gelingt den Stuttgarter Forschern durch ihre raffinierte Methode, mit der sie in rund einer Stunde zudem mehrere hundert Milliarden Exemplare einer komplexen Struktur produzieren können: Mithilfe der seit einigen Jahren bekannten mizellaren Nanolithographie platzieren sie zunächst Milliarden regelmäßig angeordneter Goldnanopartikel auf der Oberfläche eines Silicium- oder Glaswafers: Sie scheiden von einer Polymermembran umhüllte Goldteilchen auf dem Träger ab, die sich dort dicht an dicht zu einem regelmäßigen Muster anordnen. Nachdem die Materialwissenschaftler die Polymerhülle mit einem Plasma zerstört haben, bleiben die Goldpunkte zurück. Nun stellen sie den vorstrukturierten Wafer so schräg in den Strom etwa eines Metalldampfes, dass die Metallatome nur die Goldinseln sehen und sich darauf absetzen. So wachsen rasch Stäbchen auf dem Träger, die bis zu 20 Nanometern dünn sein können.

Wenn die Forscher den Träger während des Aufdampfens langsam drehen, windet sich das Stäbchen zu einer Helix. Kippen sie den Träger abrupt, bildet sich eine Zickzackform. Wenn sie zwischendurch das Material ändern, das sie in die Kammer dampfen, entsteht ein Verbundmaterial. Und natürlich können sie all diese Kniffe auch kombinieren. So versahen sie etwa Stäbchen aus Aluminiumoxid mit Kupferhaken, wobei ihnen eine dünne Titanschicht als eine Art Kleber diente.

Die entscheidende Idee: Eine Kühlung mit flüssigem Stickstoff

„Größere Strukturen werden auf ähnliche Weise bereits seit längerem hergestellt“, erklärt Max-Planck-Forscher Andrew G. Mark, der an der Entwicklung der Methode maßgeblich beteiligt war. „Bislang ließ sich die Methode jedoch nicht auf Nanostrukturen übertragen.“ Denn auf der Oberfläche eines Nanogebildes gruppieren sich die heißen und beweglichen Atome, die gerade aus dem Dampf kommen, schnell zu einer kugeligen Form um, weil diese Anordnung für die Atome energetisch am günstigsten ist. „Wir hatten daher die Idee das Trägermaterial mit flüssigem Stickstoff, der durch den Halter des Materials fließt, auf ungefähr minus 200 Grad Celsius zu kühlen, so dass ein Atom schockgefroren wird und in seiner Position erstarrt, sobald es auf der Spitze des wachsenden Nanokörpers landet“, sagt John G. Gibbs, der zu der Arbeit am Max-Planck-Institut für Intelligente Systeme ebenfalls wesentlich beitrug.

So vielseitig die Methode ist, nicht alle Formen lassen sich damit erzeugen. „Weil die Struktur immer vom Wafer weg wächst, können keine Ringe oder geschlossene Drei- oder Vierecke entstehen“, sagt Fischer. „Einen Eifelturm in Nanogröße können wir nicht bauen.“ Dennoch stehen ihm und seinem Team nun breitgefächerte Möglichkeiten offen: „Unser langfristiges Ziel ist es, Nanomaschinen zu bauen“, sagt Peer Fischer. „Die Natur baut Motoren in einer Größe von etwa 20 Nanometern. Wir möchten unsere Bauteile an solche Motoren koppeln.“ Spätestens dann könnten viele Träume der Nanoforscher Realität werden.

Ansprechpartner

Prof. Peer Fischer, Ph.D.
Telefon: +49 711 689-3560
E-Mail: OfficeFischer@­is.mpg.de
Originalpublikation
Andrew G. Mark, John G. Gibbs, Tung-Chun Lee und Peer Fischer
Hybrid nanocolloids with programmed three-dimensional shape and material composition

Nature Materials, online veröffentlicht 23. Juni 2013; DOI: 10.1038/NMAT3685

Media Contact

Prof. Peer Fischer, Ph.D. Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer