Nächster Schritt auf dem Weg zu einer effizienten Biobrennstoffzelle

In dieser elektrochemischen Zelle führten die Forscher die Biobrennstoffzellentests durch. © RUB, Marquard (Dieses Foto darf nur für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum im Kontext dieser Presseinformation verwendet werden.)

In der Zeitschrift „Nature Communications“ beschreibt ein Team des Zentrums für Elektrochemie der Ruhr-Universität Bochum gemeinsam mit Kollegen des Max-Planck-Instituts für Chemische Energiekonversion in Mülheim an der Ruhr und der Universität Lissabon, wie sie die Elektroden entwickelten und testeten. Der Artikel ist am 9. November 2018 erschienen.

Vor- und Nachteile von Gasdiffusionselektroden

Gasdiffusionselektroden können gasförmige Ausgangsstoffe für eine chemische Reaktion effizient zur Elektrodenoberfläche mit dem Katalysator transportieren. Sie wurden bereits in verschiedenen Systemen getestet – allerdings war der Katalysator darin elektronisch direkt an die Elektrodenoberfläche gebunden.

„In einem solchen System kann man nur eine einzige Enzymlage auf der Elektrode aufbringen, daher ist der Stromfluss limitiert“, beschreibt der Bochumer Chemiker Dr. Adrian Ruff einen Nachteil. Außerdem waren die Enzyme nicht vor schädlichen Einflüssen aus der Umgebung geschützt. Im Fall der Hydrogenase ist das aber notwendig, weil sie instabil gegenüber Sauerstoff ist.

Redoxpolymer als Sauerstoffschutzschild

Die Bochumer Chemiker vom Zentrum für Elektrochemie haben in den vergangenen Jahren ein Redoxpolymer entwickelt, in das sie die Hydrogenasen einbetten und vor Sauerstoff schützen können. Bislang hatten sie diese Polymermatrix jedoch nur auf ebenen Elektroden getestet, nicht auf porösen dreidimensionalen Strukturen, wie sie Gasdiffusionselektroden besitzen.

„Die porösen Strukturen bieten eine große Oberfläche und ermöglichen so eine hohe Enzymbeladung“, sagt Prof. Dr. Wolfgang Schuhmann, Leiter des Zentrums für Elektrochemie. „Aber ob der Sauerstoffschutzschild auf diesen Strukturen funktioniert und ob das System dann noch gasdurchlässig ist, war nicht klar.“

Enzyme auf Elektroden aufbringen

Problematisch für den Herstellungsprozess ist unter anderem, dass die Elektroden hydrophob, also wasserabweisend, sind, die Enzyme aber hydrophil, also wasserliebend. Die beiden Oberflächen neigen also dazu, sich gegenseitig abzustoßen.

Daher tropften die Forscher zunächst eine Adhäsionsschicht auf die Elektrodenoberfläche auf, auf die sie dann im zweiten Schritt die Polymermatrix mit Enzym aufbrachten. „Wir haben gezielt eine Polymermatrix mit einer optimalen Balance aus hydrophilen und hydrophoben Eigenschaften synthetisiert“, erklärt Adrian Ruff. „Nur so war es möglich, stabile Filme mit guter Katalysatorbeladung zu erzielen.“

Die so aufgebauten Elektroden waren immer noch durchlässig für Gas. Außerdem ergaben die Tests, dass die Polymermatrix als Sauerstoffschutzschild auch bei porösen dreidimensionalen Elektroden funktioniert.

Mit dem System erzielten die Wissenschaftler eine Stromdichte von acht Milliampere pro Quadratzentimeter. Frühere Bioanoden mit Polymer und Hydrogenase hatten nur ein Milliampere pro Quadratzentimeter erreicht.

Funktionstüchtige Biobrennstoffzelle

Das Team kombinierte die oben beschriebene Bioanode mit einer Biokathode und zeigte, dass sich so eine funktionierende Brennstoffzelle erzeugen lässt. Sie erreichte eine Leistungsdichte von bis zu 3,6 Milliwatt pro Quadratzentimeter und eine Leerlaufspannung von 1,13 Volt, die knapp unter dem theoretischen Maximum von 1,23 Volt liegt.

Förderung

Die Deutsche Forschungsgemeinschaft (DFG) förderte die Arbeiten im Rahmen des Exzellenzclusters Resolv (EXC1069) und einer Deutsch-Israelischen Projektkooperation (LU 315/17-1/2). Die DFG unterstützte die Arbeiten außerdem gemeinsam mit dem französischen Partner Agence Nationale de la Recherche (ANR) im Rahmen der Projekte SHIELD PL746/2-1 und ANR-15-CE05-0020.

Weitere Förderung kam von der portugiesischen Fundação para a Ciência e Tecnologia im Rahmen der Grants UID/Multi/04551/2013 und LISBOA-01-0145-FEDER-007660 (kofinanziert durch FCT/MCTES und FEDER-Förderung durch COMPETE2020) sowie PTDC/BBB-BEP/2885/2014 und das Promotionsstipendium SFRH/BD/100314/2014. Der Europäische Forschungsrat finanzierte die Arbeiten im Rahmen des ERC Starting Grants 715900.

Prof. Dr. Wolfgang Schuhmann
Analytische Chemie – Zentrum für Elektrochemie
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: 0234 32 26200
E-Mail: wolfgang.schuhmann@rub.de

Dr. Adrian Ruff
Analytische Chemie – Zentrum für Elektrochemie
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: 0234 32 25586
E-Mail: adrian.ruff@rub.de

Julian Szczesny, Nikola Marković, Felipe Conzuelo, Sónia Zacarias, Inês A.C. Pereira, Wolfgang Lubitz, Nicolas Plumeré, Wolfgang Schuhmann, Adrian Ruff: A gas breathing hydrogen/air biofuel cell comprising a redox polymer/hydrogenase-based bioanode, in: Nature Communications, 2018, DOI: 10.1038/s41467-018-07137-6

Media Contact

Dr. Julia Weiler idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.ruhr-uni-bochum.de/

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer