Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Einblicke in Spinnenseide

06.12.2018

Spinnenseide ist eine der stärksten Fasern der Natur und verfügt über etliche verblüffende Eigenschaften. Wissenschaftler der Universität Würzburg haben jetzt neue Details ihres Aufbaus entschlüsselt.

Sie sind leicht, beinahe unsichtbar, extrem dehnbar und reißfest und natürlich biologisch abbaubar: die Fäden, mit denen Spinnen ihre Netze bauen. Tatsächlich zählt Spinnenseide zu den belastbarsten Fasern der Natur.


Abbildung eines Spidroins, bestehend aus einer verknüpften C-terminalen Domäne (cyan), der entfalteten mittleren Domäne (weiße Linie) und den N-terminalen Domänen (grün), neben dem Schema

Hannes Neuweiler


Modell der teilentfalteten und somit stark gedehnten C-terminalen Domäne.

Hannes Neuweiler

Bezogen auf ihr geringes Gewicht übertrifft sie sogar Hightech-Fasern wie Kevlar oder Carbon. Vor allem ihre einzigartige Kombination von Reißfestigkeit und Dehnbarkeit macht sie für die Industrie äußerst attraktiv.

Ob im Flugzeugbau, in der Textilindustrie oder in der Medizin – die potenziellen Einsatzgebiete des Wundermaterials sind zahlreich.

Materialwissenschaftler versuchen deshalb seit Langem, die Faser im Labor zu reproduzieren, allerdings mit begrenztem Erfolg.

Zwar ist es mittlerweile möglich, künstliche Spinnenseide zu produzieren, die dem natürlichen Vorbild nahe kommt, dennoch ist noch immer nicht bis ins letzte Detail geklärt, welche molekularen Strukturen für diese einzigartige Kombination von Eigenschaften verantwortlich ist.

Wissenschaftler der Julius-Maximilians-Universität Würzburg (JMU) haben jetzt neue Einblicke gewonnen. Verantwortlich dafür ist Dr. Hannes Neuweiler, Privatdozent am Lehrstuhl für Biotechnologie und Biophysik der JMU. In der Fachzeitschrift Nature Communications stellt er seine Forschungsergebnisse vor.

Eine molekulare Klammer trägt zum Zusammenhalt der Bausteine bei

„Spinnenfasern besteht aus Proteinbausteinen, sogenannten Spidroinen, die die Spinne in ihrer Spinndrüse zu einem Seidenfaden zusammensetzt“, beschreibt Neuweiler den Aufbau der Fäden. Besondere Aufgaben kommen in diesem Prozess den jeweiligen Enden der einzelnen Bausteine zu – den sogenannten „terminalen Domänen“. Bei den Enden unterscheidet man die N- und C-terminale Domäne.

Beide erfüllen besondere Funktionen beim Zusammenfügen der Proteinbausteine. Für die jetzt veröffentlichte Arbeit hat Neuweiler die C-terminale Domäne genauer unter die Lupe genommen. Sie verknüpft zwei Spidroine mithilfe einer verschlungenen Struktur, die einer molekularen Klammer ähnelt.

„Wir konnten beobachten, dass die Domäne sich in zwei getrennten Schritten aufbaut. Während der erste Schritt die Zusammenlagerung beinhaltet, stellt der zweite Schritt die Faltung einer äußeren, labilen Helix-Struktur der Domäne dar“, schildert Neuweiler das zentrale Ergebnis dieser Studie.

Dieser getrennte Faltungsschritt war bisher unbekannt und könnte zur Dehnbarkeit von Spinnenseide beitragen. Schließlich sei bereits bekannt, dass sich bei einer Dehnung der Faser Helix-Strukturen entfalten.

Allerdings hatten vorherige Arbeiten gezeigt, dass die Dehnbarkeit der Faser auf die Entfaltung helikaler Strukturen im zentralen Bereich eines Spidroins zurückzuführen ist. „Unsere Ergebnisse zeigen neu, dass auch die C-terminale Domäne als Modul fungieren kann, das zur Dehnbarkeit der Faser beiträgt“, so Neuweiler.

Hilfreich für die Materialforschung

Für seine Studie hat Neuweiler die Proteinbausteine der Raubspinne Euprosthenops australis untersucht. Mit gentechnischen Methoden hat er einzelne Bestandteile dieser Bausteine ausgetauscht und das Protein mit Fluoreszenzfarbstoffen chemisch modifiziert. Durch Wechselwirkung des löslichen Proteins mit Licht konnte er anschließend zeigen, dass die Domäne sich in zwei getrennten Schritten aufbaut.

Als „einen Beitrag zum molekularen Verständnis von Aufbau, Struktur und mechanischen Eigenschaften von Spinnenseide“ versteht Neuweiler dieses Forschungsergebnis. Es könne Materialforscher dabei unterstützen, möglichst naturgetreue Spinnenseide im Labor nachzubauen. Dabei kommen momentan künstlich veränderte Spidroine als Bausteine zum Einsatz. „Wenn die C-terminale Domäne zur Flexibilität des Fadens beiträgt, ließen sich in der Materialforschung die mechanischen Eigenschaften des Fadens durch molekulare Veränderungen in der C-terminalen Domäne steuern“, ist Neuweiler überzeugt.

Wissenschaftliche Ansprechpartner:

Dr. Hannes Neuweiler, Lehrstuhl für Biotechnologie und Biophysik, T: +49 931 31-83872, hannes.neuweiler@uni-wuerzburg.de

Originalpublikation:

Two-step self-assembly of a spider silk molecular clamp. Charlotte Rat, Julia C. Heiby, Jessica P. Bunz & Hannes Neuweiler. Nature Communications. https://doi.org/10.1038/s41467-018-07227-5

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neues Additiv schützt Holzwerkstoffe vor Flammen
14.02.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Maßgeschneiderter Materialmix für dreidimensionale Mikro- und Nanostrukturen
13.02.2019 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wasser ist homogener als gedacht

Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1% Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.

Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich...

Im Focus: Licht von der Rolle – hybride OLED ermöglicht innovative funktionale Lichtoberflächen

Bislang wurden OLEDS ausschließlich als neue Beleuchtungstechnologie für den Einsatz in Leuchten und Lampen verwendet. Dabei bietet die organische Technologie viel mehr: Als Lichtoberfläche, die sich mit den unterschiedlichsten Materialien kombinieren lässt, kann sie Funktionalität und Design unzähliger Produkte verändern und revolutionieren. Beispielhaft für die vielen Anwendungsmöglichkeiten präsentiert das Fraunhofer FEP gemeinsam mit der EMDE development of light GmbH im Rahmen des EU-Projektes PI-SCALE auf der Münchner LOPEC (19. bis 21. März 2019), erstmals in Textildesign integrierte hybride OLEDs.

Als Anbieter von Forschungs- und Entwicklungsdienstleistungen auf dem Gebiet der organischen Elektronik setzt sich das Fraunhofer FEP schon lange mit der...

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Laserverfahren für funktionsintegrierte Composites

Composites vereinen gewinnbringend die Vorteile artungleicher Materialien – und schöpfen damit zum Beispiel Potentiale im Leichtbau aus. Auf der JEC World 2019 im März in Paris präsentieren die Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein breites Spektrum an laserbasierten Technologien für die effiziente Herstellung und Bearbeitung von Verbundmaterialien. Einblicke zu Füge- und Trennverfahren sowie zur Oberflächenstrukturierung erhalten Besucher auf dem Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau AZL, Halle 5A/D17.

Experten des Fraunhofer ILT erforschen und entwickeln Laserprozesse für das wirtschaftliche Fügen, Schneiden, Abtragen oder Bohren von Verbundmaterialien –...

Im Focus: Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen

Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen.

In heutigen Datenspeichern müssen magnetische Domänen mit Hilfe eines externen Magnetfeld umgeschaltet werden, welches durch elektrischen Strom erzeugt wird....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LastMileLogistics Conference in Frankfurt befasst sich mit Lieferkonzepten für Ballungsräume

19.02.2019 | Veranstaltungen

Bildung digital und multikulturell: Große Fachtagung GEBF findet an der Uni Köln statt

18.02.2019 | Veranstaltungen

Internationale Konferenz zum Thema Desinformation in Online-Medien

15.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Salzprinz“ CC1 hat wichtige Funktion in Pflanzen, auch für die Alzheimer Forschung interessant?

20.02.2019 | Biowissenschaften Chemie

Wasser ist homogener als gedacht

20.02.2019 | Biowissenschaften Chemie

Von mobilen Reinräumen und personalisierten Strandschuhen

20.02.2019 | HANNOVER MESSE

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics