Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

17.01.2020

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme schnellstmöglich abzuleiten, bis hin zu Häusern, wo eine gute Isolation für die Energiekosten essentiell ist.


Das neu entwickeltes Material leitet Wärme gut entlang der Schichten, während es senkrecht dazu wärmeisolierend wirkt.

© MPI-P, Lizenz CC-BY-SA

Oftmals werden für die Isolation extrem leichte, poröse Materialien verwendet wie beispielsweise Styropor, für die Wärmeableitung schwere Materialien wie Metalle.

Ein neu entwickeltes Material, welches Wissenschaftlerinnen und Wissenschaftler des MPI-P mit der Universität Bayreuth gemeinsam entwickelt und charakterisiert haben, kann nun beide Eigenschaften verbinden.

Das Material besteht aus sich abwechselnden Schichten hauchdünner Glasplättchen zwischen welche einzelne Polymerketten eingeschoben sind. „Im Prinzip entspricht unser so hergestelltes Material dem Prinzip einer Doppelverglasung“, so Markus Retsch, Professor an der Universität Bayreuth. „Es zeigt nur den Unterschied, dass wir nicht nur zwei Schichten haben, sondern hunderte“.

Senkrecht zu den Schichten zeigt sich eine gute Wärmeisolation. Mikroskopisch betrachtet ist Wärme eine Bewegung bzw. Schwingung einzelner Moleküle in dem Material, die sich an die benachbarten Moleküle überträgt.

Indem viele Schichten aufeinander aufgebaut werden, verringert sich diese Übertragung: Durch jede neue Grenzschicht wird ein Teil der Wärmeübertragung blockiert.

Im Gegensatz dazu kann die Wärme innerhalb einer Schicht gut geleitet werden – hier existieren keine Grenzflächen, die den Wärmefluss blockieren würden. So ist die Wärmeübertragung innerhalb einer Schicht um den Faktor 40 höher als senkrecht dazu.

Die Wärmeleitfähigkeit entlang der Schichten ist hierbei vergleichbar mit der Wärmeleitfähigkeit von Wärmeleitpaste, die unter anderem zur Aufbringung von Kühlkörpern bei Computerprozessoren verwendet wird. Für elektrisch isolierende Materialien auf Polymer/Glas Basis ist dieser Wert außergewöhnlich hoch – er übersteigt den von handelsüblichen Kunststoffen um den Faktor sechs.

Damit das Material effizient funktioniert und zudem transparent ist, mussten die Schichten mit sehr hoher Präzision aufeinander aufgebracht werden – jede Inhomogenität würde die Transparenz ähnlich wie ein Kratzer in einem Stück Plexiglas stören.

Jede Schicht hat nur eine Höhe im Bereich von einem millionstel Millimeter – also einem Nanometer. Um die Homogenität der Schichtfolge zu untersuchen, wurde das Material in der Gruppe von Josef Breu, Professor für Anorganische Chemie an der Universität Bayreuth, charakterisiert.

„Wir nutzen hierfür Röntgenstrahlen, mit denen wir das Material beleuchten“, so Breu. „Durch Überlagerungseffekte dieser Strahlen, die von den einzelnen Schichten reflektiert werden, konnten wir zeigen, dass die Schichten sehr präzise hergestellt werden konnten“.

Eine Antwort, warum diese schichtartige Struktur so außergewöhnlich unterschiedliche Eigenschaften entlang bzw. senkrecht zu den einzelnen Glasplättchen aufweist, konnte Prof. Fytas im Arbeitskreis von Prof. H.-J. Butt geben. Mit einer speziellen Laser-basierten Messung konnte seine Gruppe die Ausbreitung von Schallwellen charakterisieren, die ähnlich wie Wärme durch die Betrachtung der Schwingungen einzelner Moleküle im Material zu verstehen ist.

„Dieses strukturierte, aber dennoch transparente Material, eignet sich hervorragend, um zu verstehen, wie unterschiedlich der Schall sich entlang der verschiedenen Richtungen ausbreitet“, so Fytas.

Aus den unterschiedlichen Schallgeschwindigkeiten kann direkt auf die richtungsabhängigen mechanischen Eigenschaften geschlossen werden, welche mit keiner anderen Methode zugänglich sind.

In ihrer weiteren Arbeit möchten die Forscher noch besser verstehen, wie Schall- und Wärmeausbreitung durch den Aufbau der Glasplatten-Polymer Struktur beeinflusst werden kann.

Eine mögliche Anwendung sehen die Forscher in dem Bereich leistungsstarker Leuchtdioden, in dem die Glas-Polymerschicht einerseits als transparente Verkapselung dient, andererseits die freigesetzte Wärme seitlich abführen kann.

Ihre Ergebnisse haben die Wissenschaftler nun in der renommierten Fachzeitschrift „Angewandte Chemie – International Edition“ veröffentlicht.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Georg Fytas
MPI für Polymerforschung
Ackermannweg 10
55128 Mainz
Telefon:+49 6131 379-718
E-Mail: fytas@mpip-mainz.mpg.de

Prof. Dr. Josef Breu
Anorganische Chemie I
Universität Bayreuth
Universitätsstrasse 30
95440 Bayreuth
Telefon: +49 (0)921 / 55-3520
E-Mail: josef.breu@uni-bayreuth.de

Prof. Dr. Markus Retsch
Physikalische Chemie I
Universität Bayreuth
Universitätsstrasse 30
95440 Bayreuth
Telefon: +49 (0)921 / 55-3920
E-Mail: markus.retsch@uni-bayreuth.de

Originalpublikation:

Wang, Z.; Rolle, K.; Schilling, T.; Hummel, P.; Philipp, A.; Kopera, B. A. F.; Lechner, A. M.; Retsch, M.; Breu, J.; Fytas, G.: Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement. Angewandte Chemie, International Edition in English (2019); https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201911546

Dr. Christian Schneider | Max-Planck-Institut für Polymerforschung
Weitere Informationen:
http://www.mpip-mainz.mpg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen
17.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Neue Simulation-Experiment-Kombination erlaubt tiefere Einblicke in ultraschnelle lichtinduzierte Prozesse
13.02.2020 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste Untersuchungsergebnisse zum "Sensations-Meteoritenfall" von Flensburg

17.02.2020 | Geowissenschaften

Lichtpulse bewegen Spins von Atom zu Atom

17.02.2020 | Physik Astronomie

Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen

17.02.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics