Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Licht aus organischen Leuchtdioden

12.10.2015

Wissenschaftler aus Augsburg und Los Angeles entschlüsseln die physikalischen Mechanismen der molekularen Orientierung in phosphoreszenten organischen Mischschichten und ebnen damit weiter den Weg zu leistungsstärkeren OLEDs

Die räumliche Orientierung der Moleküle ist eine essenzielle Schlüsseleigenschaft in der organischen Elektronik. Die spezifische Ausrichtung der Moleküle beeinflusst wichtige Parameter organischer optoelektronischer Bauteile, wie z. B. die elektrischen Transporteigenschaften oder auch die Absorption bzw. die Emission von Licht.


Orientierungsmodell für Iridium-Komplexe mit aliphatischen (grün) sowie aromatischen (grau) Bereichen. Die aromatische Matrix bildet eine Grenzfläche zum Vakuum, an der sich die Moleküle ausrichten.

© Universität Augsburg/IfP/EP IV

Deshalb ist die Orientierung von organischen Farbstoffmolekülen gerade im Bereich der organischen Leuchtdioden (OLEDs) in den letzten Jahren immer stärker zum Gegenstand intensivierter Forschung geworden. Wissenschaftler aus Augsburg und Los Angeles berichten jetzt in „Nature Materials“ über neue Erkenntnisse, die den Orientierungsprozess von phosphoreszenten organo-metallischen Komplexen aufzeigt und damit einhergehend das Potential für eine signifikante Steigerung der Effizienz von OLEDs in Aussicht stellen kann.

Die Forschungsgruppe „Organische Halbleiter“ von Prof. Wolfgang Brütting am Lehrstuhl Experimentalphysik IV der Universität Augsburg hat früh Pionierarbeit auf dem Gebiet der Orientierung organischer Farbstoffmolekülen im OLED-Kontext geleistet.

Bereits 2011 konnte sie in Kooperation mit einer Forschergruppe an der Kyushu University (Japan) erstmals nachweisen, dass organische Farbstoffmoleküle, die unter Vakuumsbedingungen zusammen mit einem Wirtsmaterial, der sogenannten Matrix, durch einen thermischen Aufdampfprozess als dünne Schicht auf eine Substratoberfläche aufgebracht werden, sich nicht zufällig, sondern ausgeprägt liegend in der Schichtebene orientieren.

Die räumliche Verteilung der Lichtemission solcher organischen Farbstoffe ähnelt derjenigen eines klassichen elektrischen Dipols, einer Antenne also, die vor allem senkrecht zu ihrer Achse abstrahlt. Dies bringt enorme Vorteile für die Lichtausbeute und erweist sich damit als ein vielversprechendes Konzept der Effizienzsteigerung von OLEDs.

Seit dieser Entdeckung haben Brütting und seine Arbeitsgruppe nicht nur eine inzwischen etablierte Untersuchungsmethode entwickelt, um die räumliche Orientierung der sogenannten Übergangsdipolmomente, die für die Emission und Absorption von Licht verantwortlich sind , in Abhängigkeit der Substratoberfläche zu bestimmen; zusammen mit Forschern des Fraunhofer-Instituts in Jena und der OSRAM OLED GmbH in Regensburg haben sie vielmehr erstmals auch die anisotrope, d. h. nicht gleichmäßige, sondern vorwiegend horizontale Orientierung im Falle eines phosphoreszenten Iridium-Komplexes nachweisen können.

Aufgrund der enormen, bis zur Verdopplung reichenden Steigerung der Effizienz, die mit der horizontalen Orientierung der Farbstoffmoleküle möglich wird, wurden seither intensiv die mögliche Beeinflussung und die zugrundeliegenden Mechanismen der ungleichmäßigen, horizontalen Orientierung untersucht. Ein großes Hindernis bei diesen Untersuchungen war der Umstand, dass die Orientierung der Farbstoffmoleküle in den mit ihnen dotierten organischen Schichten nicht direkt bestimmt werden kann; dass vielmehr lediglich die räumliche Verteilung der strahlenden Übergangsdipolmomente aller Farbstoffmoleküle erkennbar ist.

Deshalb war es bisher nicht möglich, die molekulare Orientierung mit den Ergebnissen der räumlichen Emissionsintensitätsverteilung zu verknüpfen. Eine solche Verknüpfung ist aber wiederum eine unverzichtbare Voraussetzung, um die molekulare Orientierung gezielt beeinflussen zu können.

Jetzt ist es den Augsburger Physikern um Brütting und seinem Mitarbeiter Dr. Tobias Schmidt in Kooperation mit Forschern der University of Southern California (Los Angeles) gelungen, anhand von Untersuchungen spezieller phosphoreszenter, organo-metallischer Iridium-Komplexe einen entscheidenden Schritt bei der Lösung des Problems weiterzukommen. Sie konnten, wie sie in „Nature Materials“ berichteten, nicht nur zwei bisherige Theorien durch die geschickte Synthese verschiedener Moleküle und der anschließenden Bestimmung der Orientierung ihrer Übergangsdipolmomenten bei unterschiedlichen Dotierkonzentrationen widerlegen, sondern zugleich auch eine neues Modell der Orientierungsmechanismen präsentieren.

Dieses Modell macht es möglich, die gemessene Orientierung der Übergangsdipolmomente direkt mit der Orientierung der Moleküle zu verknüpfen. Grundlage des Modells ist dabei die Grenzfläche zwischen der organischen (aromatischen) Matrix und dem Vakuum, die beim Schichtwachstum entsteht. Die bisher gefundenen phosphoreszenten Iridium-Komplexe mit anisotroper Orientierung in OLEDs besitzen alle sowohl aromatische als auch nicht-aromatische - sogenannte aliphatische - Bereiche in ihrer Molekülstruktur.

Während des Aufdampfens auf das Substratmaterial orientieren sich die Farbstoffmoleküle mit ihren aliphatischen Bereichen zur Vakuumseite an der Oberfläche der aufwachsenden Schicht. Durch die Kenntnis der Lage der Übergangsdipolmomente auf dem Farbstoffmolekül kann die molekulare Orientierung mit der messbaren, auf die Substratoberfläche bezogenen räumlichen Verteilung der Übergangsdipolmomente in unmittelbare Beziehung gesetzt werden.

„Wir können damit nun auch Vorhersagen zur Orientierung beliebiger organo-metallischer Iridium-Moleküle machen, die es erlauben, das Design dieser Farbstoffe so zu gestalten, dass die Effizienz von OLEDs deutlich gesteigert werden kann“, erläutert Brütting und ist überzeugt: „Damit sind wir auf dem Weg zu effizienteren, lichtstärkeren OLEDs einen entscheidenden Schritt weitergekommen.“

Die Untersuchungen der Augsburger Physiker und ihrer Kollegen an der University of Southern California wurden finanziell von der Deutschen Forschungsgemeinschaft (DFG) mit einer Sachbeihilfe zum Aufbau einer internationalen Kooperation (Br 1728/16-1) gefördert, weiterhin von der Alexander von Humboldt-Stiftung und vom Bavaria California Technology Center (BaCaTeC).

Publikation:

Matthew J. Jurow, Chritian Mayr, Tobias D. Schmidt, Thomas Lampe, Peter I. Djurovich, Wolfgang Brütting, Mark E. Thompson: Understanding and Predicting the Orientation of Heteroleptic Phosphors in Organic Light-Emitting Materials, Nature Materials, 5. Oktober 2015, doi:10.1038/nmat4428

Ansprechpartner:

Prof. Dr. Wolfgang Brütting
Telefon 0821-598-3403
wolfgang.bruetting@physik.uni-augsburg.de

Weitere Informationen:

http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4428.html

Klaus P. Prem | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-augsburg.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Abbau von Magnesiumlegierung auf der Nanoskala beobachtet
23.10.2019 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen
17.10.2019 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

13. Aachener Technologie- und Innovationsmanagement-Tagung – »Collaborate to Innovate: Making the Net Work«

22.10.2019 | Veranstaltungen

Serienfertigung von XXL-Produkten: Expertentreffen in Hannover

22.10.2019 | Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Abbau von Magnesiumlegierung auf der Nanoskala beobachtet

23.10.2019 | Materialwissenschaften

Physiker der Saar-Uni wollen neuartige Mikroelektronik entwickeln

23.10.2019 | Physik Astronomie

Auf dem absteigenden Ast: Zunehmende Waldbrände gefährden Fichten und Tannen in Südosteuropa

23.10.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics