Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mechanisch und optisch einwandfreie Nähte

10.10.2011
Neue Absorbersysteme zur Verbesserung der Nahtqualität beim Laserschweißen technischer Textilien

Im Rahmen des Forschungsprojektes (AiF-Nr. 17031 N) „Absorbersysteme zum Laserschweißen von Textilien“ arbeiten Wissenschaftler der Hohenstein Institute zusammen mit Kollegen des Deutschen Wollforschungsinstituts in Aachen momentan an der Entwicklung neuer Infrarot Absorbersysteme zur mechanischen und optischen Verbesserung von lasergeschweißten Nähten.

Dadurch kann das Laserschweißen von Textilien, eine alternative und zukunftsweisende aber noch junge Fügetechnik, breiter eingesetzt werden. Besonders bei der Produktion von technischen und medizinischen Textilien ist dadurch eine deutliche Qualitätsverbesserung gegenüber herkömmlichen Lösungen zu erwarten.

Das Laserschweißen von Textilien bietet eine Reihe von Vorteilen gegenüber dem traditionellen Nähen mit Nadel und Faden. Es ermöglicht eine Verbesserung der Produktqualität insbesondere bei der Verarbeitung großflächiger technischer Textilien. Die durch das Schweißen hergestellten Nähte sind flach, dehnbar, flexibel, absolut dicht gegenüber Flüssigkeiten und Gasen und überzeugen durch eine hohe Zugfestigkeit. Herkömmliche Nahtfehler werden vermieden und die Qualität des Schweißprozesses lässt sich online automatisch überwachen.

In vielen technischen Anwendungsbereichen wie Medizintextilien, Schutzbekleidung, Textilien für den Fahrzeugbau, Möbelherstellung und Outdoorprodukte werden diese Eigenschaften gefordert und würden die bislang sehr aufwändige Überprüfung der Produktqualität der Fügestellen während und nach den Herstellungsprozessen minimieren.

Eine Herausforderung der noch relativ jungen und wenig verbreiteten Methode, bei der ein Infrarot-Laser zum Einsatz kommt, ist, dass nur wenige Textilien aus thermoplastischem Fasermaterial im Bereich des nahen infraroten Lichtes die Laserstrahlung absorbieren. Das erfordert bei vielen Textilien den Einsatz von Absorbern, die speziell das infrarote Licht absorbieren. Diese Substanzen ihrerseits verursachen jedoch Verfärbungen und farbliche Beeinträchtigungen der Fügestellen. Diese Eigenschaft erschwert die Anwendung des Laserschweißens insbesondere bei hellen und durchsichtigen Textilien.

Im Rahmen des laufenden Forschungsprojekts sollen nun diese neuen Absorbersysteme entwickelt und systematisch untersucht werden.

Die neuen Formulierungen sollen einfach und materialsparend anwendbar, mit dem textilen Material kompatibel sein und die gewünschten Anforderungen möglichst umfassend erfüllen. Es sollen, besonders bei hellen und durchsichtigen Textilien, optisch und mechanisch einwandfreie Fügestellen mit hohen Gebrauchseigenschaften entstehen.

Zusätzlich werden die Einstellungsparameter für das Laserschweißen wie Temperatur, Geschwindigkeit und Druck auf die Absorber angepasst. Das ermöglicht den konfektionierenden Betrieben, den Prozess unmittelbar auf eigene Materialien und die eigene Produktpalette anzuwenden.

Diese neue Fügetechnik eignet sich sowohl für die Einzelfertigung als auch zur Fertigung mit hohem Automatisierungsgrad. Die Minimierung der Prozessschritte und die Erhöhung der Prozessqualität ermöglicht Umsatzsteigerungen der klein- und mittelständischen Unternehmen und verschafft Ihnen Wettbewerbsvorteile gegenüber herkömmlichen textilen Fügetechniken.
Ansprechpartner:
Hohenstein Institute
Dr. Edith Claßen
e.classen@hohenstein.de

Rose-Marie Riedl | idw
Weitere Informationen:
http://www.hohenstein.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund
22.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Nah dran an der Fiktion: Die Außenhaut für das Raumschiff „Enterprise“?
22.06.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics