Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Material für dichtere Magnetspeicher

27.03.2015

Neue Legierungen, die sich stark magnetisieren lassen, ermöglichen höhere Speicherdichten auf Festplatten

Informationstechnologie ist heute auch eine Herausforderung für die Materialwissenschaft: Sie braucht Materialien mit neuen magnetischen Eigenschaften, etwa für neuartige Speichermedien oder Festplatten-Leseköpfe. Dresdner Max-Planck-Forscher können da helfen. Denn sie können neue Materialien mit gewünschten magnetischen Eigenschaften am Computer designen und anschließend im Labor herstellen. Auf diese Weise hat ein Team um Claudia Felser, Direktorin am Max-Planck-Institut für chemische Physik fester Stoffe, nun eine Legierung konzipiert und hergestellt, die so stark magnetisiert werden kann wie bislang kein anderes Material. Und das obwohl der Stoff zunächst nicht-magnetisch zu sein scheint. Doch die Verbindung aus Mangan, Platin und Gallium wird durch ein äußeres Magnetfeld selbst magnetisch und behält auch nach Abschalten des äußeren Feldes ein starkes inneres Feld. Dass die Forscher einen solchen Effekt mit einem zweiten Material auch bei Raumtemperatur erzielten, zeigt, wie relevant die in Dresden entwickelten Methoden des Materialdesigns für Anwendungen sind.

Magnetische Materialien spielen eine Schlüsselrolle in der Informationstechnologie. Festplatten beispielsweise speichern Information auf winzigen magnetischen Inselchen. Diese können ähnlich winzigen Kompassnadeln in entgegengesetzten Richtungen magnetisiert werden. Die zwei Zustände stehen für eine „0“ beziehungsweise eine „1“ und speichern so ein Bit Information. In Zukunft sollen die Inselchen immer weiter schrumpfen, um die Speicherkapazität weiter zu erhöhen. Die immer kleineren Inselchen könnten aber auch Grundlage für neue Speicherkonzepte sein. Damit diese Miniaturisierung weiter gelingt, müssen neue Legierungen entwickelt werden, die Magnetfelder auch dann noch festhalten, wenn ein Magnet-Inselchen nur noch wenige Nanometer klein ist. Das ist jedoch schwierig, weil eine kleine Kompassnadel leichter von Umwelteinflüssen gestört wird als eine größere.

Auch bei Leseköpfen wird dieses Problem in Zukunft eine Rolle spielen. Leseköpfe enthalten zwei magnetische Schichten, von denen eine als Referenzschicht eine feste Magnetisierung besitzt, während die Magnetisierung der zweiten durch die magnetischen Inselchen auf der Festplatte umgeschaltet wird. Je nach Orientierung gegenüber der Referenzschicht ändert sich der Stromfluss durch den Lesekopf, sodass die Information auf der Festplatte in elektrische Signale umgewandelt wird. Auch hier sucht man nach Materialien, die die Magnetisierung der Referenzschicht möglichst gut festhalten, um die Leseköpfe weiter verkleinern zu können. Gesucht sind also neue magnetischen Materialien, die diesen Anforderungen genügen.

Am Computer wird eine stark magnetisierbare Legierung designed

„Wir können Materialien mit sehr unterschiedlichen magnetischen Eigenschaften am Computer designen und anschließend herstellen“, sagt Claudia Felser, Direktorin am Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden. Auf diese Weise hat ihr Team nun eine Legierung mit sehr außergewöhnlichen Eigenschaften entwickelt. Eine nach außen unmagnetische Legierung aus den Metallen Mangan, Platin und Gallium behält ein starkes inneres Magnetfeld, nachdem es vorübergehend einem äußeren Magnetfeld ausgesetzt worden ist.

Das Material speichert sozusagen ein äußeres magnetisches Signal auf sehr störungsresistente Weise. Das innere Magnetfeld ist mit mehr als drei Tesla so stark wie das eines starken Magentresonanztomographen in der Medizin und gehört zu den größten bislang gemessenen. Diese starke und stabile Magnetisierung könnte helfen, die magnetische Stabilität stark miniaturisierter Bauelemente zu erhöhen.

Die Forscher stellten zunächst eine so genannte Heusler-Verbindung her. Dabei handelt es sich um eine Legierung, deren magnetische Eigenschaften sich grundlegend von denen der Einzelkomponenten unterscheiden. Die Atome eines bestimmten Metalls besitzen ein so genanntes magnetisches Moment, das man sich wie eine Kompassnadel vorstellen kann.

Magnetische Inseln richten sich am äußeren Magnetfeld aus

Verbinden sich Atome verschiedener Metalle zu einer Legierung, dann ordnen sie sich in einer bestimmten dreidimensionalen, gitterähnlichen Struktur nebeneinander an. Die magnetischen Momente beeinflussen sich gegenseitig, wobei sie sich parallel oder antiparallel anordnen können. Die Dresdner Forscher mischten Mangan, Platin und Gallium in einem ganz bestimmten Verhältnis, und zwar so, dass sich die magnetischen Momente der Mangan-Atome abwechselnd antiparallel ausrichteten. Auf diese Weise neutralisieren sich die magnetischen Momente gegenseitig. Einen solchen Kristall, der nach außen hin unmagnetisch erscheint, nennen Fachleute einen synthetischen Antiferromagneten.

Am High Field Magnet Laboratory (HFML) an der Radboud University in Nimwegen, Niederlande, ließen die Dresdner Forscher ihre Probe einem sehr großen Magnetfeld von 20 Tesla aussetzen. Unter Einwirkung dieses Magnetfeldes wurde die Legierung in dem Magnetfeld auf eine Temperatur von etwa minus 150 Grad Celsius abgekühlt. Dadurch entstand im Innern des Kristalls ein Magnetfeld von mehr als drei Tesla Stärke. Und selbst, als das Magnetfeld abgeschaltet wurde, behielt die Legierung ihr inneres Magnetfeld bei.

Die Dresdner Forscher erklären dieses Ergebnis so: Im Innern der Heusler-Verbindung gibt es winzige Inselchen, in denen sich die magnetischen Momente der einzelnen Atome nicht vollständig kompensieren. Legt man ein äußeres Feld an, drehen sich diese Inselchen in die Richtung des Magnetfeldes und wachsen in ihrer Größe. Sie addieren so ihre magnetischen Momente zu einem starken Magnetfeld. Nach dem Abschalten des Magnetfeldes bleiben die Inselchen in dieser Orientierung, da die Kompassnadeln an ihren Rändern mit den entgegengesetzt orientierten Kompassnadeln, die das Inselchen unmittelbar umgebenden, wechselwirken und dadurch festgehalten werden. Die magnetischen Momente, die das Inselchen einsäumen, wirken sozusagen wie Heftzwecken für dessen magnetische Orientierung.

Die Kommerzialisierung wird mit einem Festplattenhersteller vorangetrieben

Dieser Hafteffekt macht die Legierung interessant für Magnetspeicher, bei denen auch Bits im Nanoformat stabil bleiben. Ein weiterer Pluspunkt: Das Magnetfeld der Inselchen sind durch die entgegengesetzt orientierten Magnetmomente, die sie umgeben, voneinander ziemlich gut abgeschirmt. „Daher kann es benachbarte Magnete nicht negativ beeinflussen“, erklärt Felser. Somit lässt sich Information auf Festplatten oder künftigen magnetischen Arbeitsspeichern extrem dicht packen, ohne dass sich die Bits gegenseitig stören.

Der Mechanismus, der die Magnetisierung der Inselchen festhält, ist der gleiche, der bei Leseköpfen die Magnetisierung der Referenzschicht sichert, Fachleute sprechen von einem Exchange Bias. Daher sind die Ergebnisse auch für die weitere Miniaturisierung dieser Bauteile interessant.

Eine zweite Legierung aus Mangan, Eisen und Gallium zeigte ähnliche Effekte auch bei Raumtemperatur. „Das beweist, dass unser Konzept universell ist und sich eignet, Alltagsanwendungen zu realisieren“, sagt Claudia Felser.

Um die Kommerzialisierung ihrer Forschungsergebnisse voranzutreiben, arbeiten die Dresdener Forscher bereits mit einem Festplattenhersteller zusammen. Claudia Felser ist guter Dinge, weitere anwendungsrelevante Materialien im Computer zu designen. „Wir haben ein Team von etwa 50 Forschern, eine starke Theoriegruppe und eine synthetische Gruppe, welche die Materialien herstellen kann“, erklärt die Chemikerin. In kleineren Gruppen arbeiten sie an verschiedensten Materialdesigns. Etwa auch an neuen Thermoelektrika, die zum Umwandeln von Abwärme in elektrische Energie dienen sollen. Die Spezialität der Dresdener Forschergruppe sei es, Werkstoffe so zu designen, wie es sich potenzielle Anwender wünschen.


Ansprechpartner

Prof. Dr. Claudia Felser
Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden
Telefon: +49 351 4646-3001

Fax: +49 351 4646-3002

E-Mail: Claudia.Felser@cpfs.mpg.de

Max-Planck-Institut für Chemische Physik fester Stoffe


Originalpublikation
Ajaya K. Nayak, Michael Nicklas, Stanislav Chadov, Panchanana Khuntia, Chandra Shekhar, Adel Kalache, Michael Baenitz, Yurii Skourski, Veerendra K. Guduru, Alessandro Puri, Uli Zeitler, J. M. D. Coey and Claudia Felser

Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias

Nature Materials, online veröffentlicht 16. März 2015; doi: 10.1038/NMAT4248

Prof. Dr. Claudia Felser | Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden
Weitere Informationen:
http://www.mpg.de/9086009/magnetspeicher-magnetisierbar-material

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund
22.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Nah dran an der Fiktion: Die Außenhaut für das Raumschiff „Enterprise“?
22.06.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics