Maßgeschneiderte Spitzen für Rasterkraftmikroskope

Optimal an spezielle Anforderungen angepasste Sondenspitzen für Rasterkraftmikroskope können nun am KIT mittels Nano-3D-Druck hergestellt werden. Bilder: KIT

Mit Hilfe der Rasterkraftmikroskopie ist es möglich, Oberflächen bis in die atomare Ebene hinein zu analysieren. Die bislang dafür gebräuchlichen, in Standardgrößen erhältlichen Spitzen eignen sich jedoch nicht für jeden Einsatz.

Manch ein Untersuchungsobjekt erfordert eine speziell gestaltete Form oder eine besonders lange Spitze, mit der sich starke Vertiefungen im Material abtasten lassen. Wissenschaftler am KIT zeigen jetzt, wie es möglich ist, optimal an spezielle Anforderungen angepasste Sondenspitzen einfach herzustellen.

„Biologische Oberflächen, zum Beispiel die Blütenblätter von Tulpen oder Rosen, haben häufig Strukturen, die sehr tief sind und hohe Hügelchen aufweisen“, sagt Privatdozent Hendrik Hölscher, der am Institut für Mikrostrukturtechnik des KIT die Arbeitsgruppe Rastersonden-Technologien leitet.

Die auf dem Markt erhältlichen Spitzen seien typischerweise 15 Mikrometer – 15 Tausendstel Millimeter – hoch, pyramidenförmig und relativ breit, so der Physiker. Anders geformte Spitzen sind zwar zu kaufen, jedoch aufwendig in Handarbeit hergestellt und teuer.

Mit Hilfe der 3D-Laserlithografie ist es den Karlsruher Forschern nun gelungen, maßgeschneiderte Spitzen in beliebiger Gestalt zu formen, die einen Radius von nur 25 Nanometer – 25 Millionstel Millimeter – haben. Das Verfahren, mit dem sich jede gewünschte Form mit dem Computer gestalten und anschließend im 3D-Druck herstellen lässt, ist im makroskopischen Bereich bereits einige Zeit bekannt, auf der Nanoskala ist dieser Ansatz anspruchsvoll.

Um die jeweils gewünschten dreidimensionalen Strukturen zu erhalten, nutzen die Forscher das am KIT entwickelte und von dem Unternehmen Nanoscribe – einer Ausgründung des KIT – vermarktete Verfahren der 3D-Lithografie. Sie basiert auf der Zwei-Photonen-Polymerisation: Stark fokussierte Laserimpulse lassen lichtempfindliche Materialien in den gewünschten Strukturen aushärten, die anschließend aus dem umliegenden, nicht belichteten Material herausgelöst werden. „Die Methode bietet den Vorteil, dass sich für jede Probe, die man untersuchen möchte, die perfekte Spitze herstellen lässt“, erläutert Hölscher.

Über den Nutzen des Verfahrens für die Verbesserung der Rasterkraftmikroskopie berichten die Forscher unter dem Titel „Tailored probes for atomic force microscopy fabricated by two-photon polymerization“ in der Fachzeitschrift Applied Physics Letters. Die in beliebiger Form herstellbaren Spitzen lassen sich auf herkömmliche handelsübliche Messnadeln aufsetzen und zeigen einen geringen Verschleiß. Sie eignen sich hervorragend für die Untersuchung von biologischen Proben, aber auch von technischen und optischen Komponenten auf der Nanoebene.

Gefördert wurde die Forschung durch die Deutsche Forschungsgemeinschaft, durch ein ERC Starting Grant und ein Senior Grant des Europäischen Forschungsrates, durch Mittel der Alfried Krupp von Bohlen und Halbach Stiftung sowie – innerhalb des Verbundprojekts PHOIBOS – durch das Bundesministerium für Bildung und Forschung, außerdem wurde sie unterstützt durch die Hochtechnologieplattform „Karlsruhe Nano-Micro-Facility“ (KNMF) am KIT.

Gerald Göring, Philipp-Immanuel Dietrich, Matthias Blaicher, Swati Sharma, Jan G. Korvink, Thomas Schimmel, Christian Koos, and Hendrik Hölscher: Tailored probes for atomic force microscopy fabricated by two-photon polymerization. Applied Physics Letters. DOI: 10.1063/1.4960386
http://scitation.aip.org/content/aip/journal/apl/109/6/10.1063/1.4960386

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

http://scitation.aip.org/content/aip/journal/apl/109/6/10.1063/1.4960386

Media Contact

Monika Landgraf Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer