Maßgeschneiderte Oberflächeninspektion

Prototypische Inspektion der Oberfläche einer BLISK (Bladed Integrated Disk) mit zwei Kameras und einer Beleuchtung. © Fraunhofer ITWM

Bevor ein Werkstück die Produktionshalle verlässt, wird es genau unter die Lupe genommen: Denn schon kleinste Risse oder Schlagstellen können Zuverlässigkeit und Lebensdauer eines Bauteils beeinträchtigen – gerade bei sicherheitskritischen Anwendungen, etwa in der Automobilindustrie oder der Luft- und Raumfahrt, dürfen daher nur einwandfreie Teile verbaut werden. Aber auch ästhetische Aspekte zählen, beispielsweise bei Deckenplatten oder Bauteilen für den Automobil-Innenraum.

Um ein Werkstück zu prüfen, werden Verfahren zur Bildverarbeitung eingesetzt. Mehrere Kameras machen aus unterschiedlichen Winkeln Aufnahmen von der Bauteiloberfläche, die von einer Software ausgewertet werden. »Jedes Material hat eine ganz eigene Oberflächenstruktur.

Um die Qualität zu beurteilen, muss das Prüfverfahren genau auf diese speziellen Eigenschaften abgestimmt sein«, erklärt Markus Rauhut vom Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM. Auch Größe und Form eines Bauteils sowie die gewünschte Auflösung der Aufnahmen spielen eine Rolle.

Zwar gibt es bereits eine Reihe von Oberflächeninspektionssystemen am Markt, die jedoch nur für bestimmte Materialien und Größen ausgelegt sind. Das gesamte Spektrum an möglichen Prüfaufgaben lässt sich mit Standardlösungen nicht abdecken.

Diese Lücke schließen die Forscher vom ITWM: Mit »MASC – Modular Algorithms for Surface InspeCtion« entwickelten die Kaiserslauterer ein modulares Inspektionssystem, das sich individuell an kundenspezifische Anforderungen anpassen lässt.

»Unser System eignet sich für unterschiedlichste Materialien wie Metall, Leder, Textilien oder Papier und umfasst ein Größenspektrum von winzigen Bauteilen für die Medizintechnik bis hin zu ganzen Rinderhäuten oder Deckenplatten«, so Rauhut. MASC-STeX zur Inspektion von Deckenplatten und MASC-Dehnzelle zur Inspektion von Dehnzellen sind bereits im praktischen Einsatz bei der Industrie.

Basisversion mit mehr als 300 Algorithmen

Zunächst wird die Werkstückoberfläche mit mehreren Kameras aus unterschiedlichen Winkeln ausgeleuchtet und abgerastert. »Das ist wichtig, um auch Schlagstellen oder Risse aufzuspüren, die nur von einer Seite sichtbar sind«, erläutert Rauhut. Bei Freiformflächen werden auf diese Weise auch Regionen erfasst, die durch Krümmungen oder Ecken abgedeckt sind. Je komplexer die Geometrie, desto mehr Kameras benötigt man in der Regel.

»Um den Aufwand in Grenzen zu halten, konzentrieren wir uns in der Praxis auf Bereiche, in denen ein Fehler tatsächlich negative Auswirkungen hätte«, so der Forscher. Zur Analyse der Aufnahmen entwickelten die Wissenschaftler mathematische Auswertealgorithmen und bauten daraus eine umfangreiche Softwarebibliothek auf. »Ein Algorithmus ist beispielsweise darauf programmiert, Kanten oder bestimmte Farbpunkte im Bild zu finden«, erklärt Kai Taeubner vom ITWM. Allein die Basisversion der Software umfasst mehr als 300 Algorithmen, die je nach Prüfaufgabe kombiniert werden können.

Eine besondere Herausforderung sind Prüfaufgaben, bei denen eine sehr hohe Auflösung gefragt ist. Keine Oberfläche ist ganz homogen, jede weist kleine Macken oder Schwankungen in der Helligkeit auf. Bei Projekten, die von der Auflösung in den mikroskopischen Bereich gehen, wird es immer schwieriger, Unregelmäßigkeiten in der Oberflächentextur von tatsächlichen Fehlern zu unterscheiden. Die Folge: Einwandfreie Bauteile werden als fehlerhaft aussortiert. »Das ist ein weiterer Vorteil unseres Verfahrens: Wir können die Analyse mithilfe unserer Algorithmen so verfeinern, dass Pseudofehler nahezu ausgeschlossen sind«, so Taeubner.

Sind alle Prüfparameter eingestellt, wird das Verfahren beim Kunden in den Produktionsprozess integriert. Die Kameras werden dazu entweder direkt am Band installiert oder mit Robotern zugeführt. Bei einem Fehlerfund stoppt der Produktionsprozess automatisch, gleichzeitig erhält der Maschinenführer eine Meldung. Die erkannten Fehler werden klassifiziert und das Prüfobjekt in Güteklassen eingeteilt.

Media Contact

Markus Rauhut Fraunhofer Forschung Kompakt

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer