Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetischer Temperaturmesser entdeckt

27.07.2015

Kieler Forschende entwickeln neuartige Methode der Wärmebildgebung

Wer sein Haus energetisch sanieren möchte, nutzt oft die bekannten, gelb bis blau leuchtenden Wärmebilder. Mittels Infrarotmessung sollen dabei Schwachstellen sichtbar gemacht werden. Auch in der Industrie wird die Thermografie bei der Werkstoffprüfung eingesetzt. Abhängig vom Material kann es bei der Methode allerdings zu großen Messfehlern kommen. Aus den Laboren der Christian-Albrechts-Universität zu Kiel (CAU) kommt nun eine Technik, die materialunabhängig minimalste Temperaturunterschiede mit hoher räumlicher Auflösung sichtbar macht. Auch anderen Verfahren macht das neuartige Prinzip Konkurrenz. Das berichten die Forschenden in der aktuellen Ausgabe des Fachjournals Advanced Materials.


Thermografische Aufnahme eines integrierten Schaltkreises mittels pyro-magnetischer Optik. Das Bild zeigt sowohl die magnetischen Domänen als auch die Wärmeverteilung entlang der Drähte an.

McCord/Wiley

Die Wissenschaftler aus Kiel machen sich bei ihrer Entdeckung die magnetischen Eigenschaften eines bestimmten Materials zunutze. In den Experimenten wird eine dünne und transparente Schicht einer Granat-Verbindung (Granat ist ein Mineral aus der Klasse der Silikate) auf den Untersuchungsgegenstand aufgelegt – in diesem Fall ein integrierter Schaltkreis eines Mikrochips. Verändert sich nun die Temperatur irgendwo in dem Schaltkreis auch nur minimal, reagiert das darauf liegende Material mit veränderten magnetischen Eigenschaften. Je wärmer es wird, desto kleiner wird die Magnetisierung.

Diese, je nach Temperatur unterschiedliche, Magnetisierung kann mit einem sogenannten Polarisationsmikroskop sichtbar gemacht werden: Polarisiertes Licht ist Licht, dem eine bestimmte Schwingrichtung aufgezwungen wird (etwa wie bei manchen Sonnenbrillen).

Trifft es auf die Oberfläche der dünnen Schicht, wird es je nach deren Magnetisierung anders reflektiert. Eine digitale, lichtempfindliche Kamera nimmt das zurückgeworfene Licht auf. Die magnetooptischen Aufnahmen zeigen die Temperaturverteilung im Schaltkreis und die winzigen magnetischen Domänen des Materials; das sind abgegrenzte Bereiche, die die gleiche Polarisation haben.

Das von den Kieler Physikern entworfene Material funktioniert als extrem genauer Temperaturmesser. Minimale Veränderungen von bis zu einem Hundertstel Grad Celsius, die in Millisekunden ablaufen, kann die Messmethode mit einer Auflösung von Mikrometern anzeigen. „Unsere Technik eröffnet damit völlig neue Möglichkeiten für verschiedene Wärmebildanwendungen“, ist sich Professor Jeffrey McCord, Leiter der Studie vom Kieler Institut für Materialwissenschaften, sicher.

Denkbar sind neuartige Wärmebildkameras. Insbesondere die Fehleranalyse von elektronischen Bauteilen könnte die „pyro-magnetische Optik“, so der Name des neuen Verfahrens, einfacher und genauer machen.

Die Forschungsergebnisse wurden zusammen mit Wissenschaftlern der russischen Tver State University und dem russischen Forschungsinstitut für Materialwissenschaften und Technologie erzielt.

Originalpublikation:
Kustov, M., Grechishkin, R., Gusev, M., Gasanov, O. and McCord, J. (2015), A Novel Scheme of Thermographic Microimaging Using Pyro-Magneto-Optical Indicator Films. Adv. Mater.. doi:10.1002/adma.201501859
Link: http://dx.doi.org/10.1002/adma.201501859

Bildmaterial steht zum Download bereit:
http://www.uni-kiel.de/download/pm/2015/2015-275-1.jpg
Bildunterschrift: Jeffrey McCord ist Heisenberg-Professor an der Universität Kiel. Dort beschäftigt er sich schwerpunktmäßig mit Magnetismus.
Foto/Copyright: Denis Schimmelpfennig/CAU

http://www.uni-kiel.de/download/pm/2015/2015-275-2.png
Bildunterschrift: Schema der „pyro-magnetischen Optik“, die neue Möglichkeiten für die Wärmebildgebung eröffnet.
Abbildung/Copyright: McCord/Wiley

http://www.uni-kiel.de/download/pm/2015/2015-275-3.jpg
Bildunterschrift: Thermografische Aufnahme eines integrierten Schaltkreises mittels pyro-magnetischer Optik. Das Bild zeigt sowohl die magnetischen Domänen als auch die Wärmeverteilung entlang der Drähte an. Der Punkt, an dem das Gelb in Weiß übergeht, weist auf eine Engstelle mit hoher Wärmeentwicklung hin. Die Temperaturunterschiede reichen in diesem Fall von einem halben bis zu einem Grad Celsius.
Bild/Copyright: McCord

Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt „Nanowissenschaften und Oberflächenforschung“ (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Materialwissenschaft, Chemie, Physik, Biologie, Elektrotechnik, Informatik, Lebensmitteltechnologie und verschiedenen medizinischen Fächern zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf www.kinsis.uni-kiel.de

Kontakt:
Prof. Dr. Jeffrey McCord
Institut für Materialwissenschaft
Tel.: 0431/880-6123
E-Mail: jmc@tf.uni-kiel.de


Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text: Denis Schimmelpfennig
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de , Jubiläum: www.uni-kiel.de/cau350 
Twitter: www.twitter.com/kieluni , Facebook: www.facebook.com/kieluni

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bayreuther Forscher entdecken stabiles hochenergetisches Material
14.10.2019 | Universität Bayreuth

nachricht Neuer Werkstoff für den Bootsbau
14.10.2019 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungsnachrichten

Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

16.10.2019 | Messenachrichten

Es braucht mehr als einen globalen Eindruck, um einen Fisch zu bewegen

16.10.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics