Magnetische Superatome nachgewiesen – Basis für neuartige Materialien geschaffen

Die Superatome werden in der Clusterquelle erzeugt und der Strahl durch einen Magneten aufgespalten. Diese Aufspaltung des Strahls wird mittels eines Massenspektrometers nachgewiesen. Copyright: TU Darmstadt<br>

Dieses Ergebnis bestärkt die Aussicht, dass Superatome, also besonders stabile Cluster, in der Nanotechnologie zur Herstellung von neuartigen Materialien, etwa für magnetische Datenspeicher oder noch leistungsstärkere Computerchip-Technologien, verwendet werden können.

Die Forscher Urban Rohrmann und Rolf Schäfer vom Eduard-Zintl-Institut der Technischen Universität Darmstadt nutzten dafür ein physikalisches Experiment, das die Physiker Otto Stern und Walther Gerlach vor gut 90 Jahren in Frankfurt durchgeführt haben. Der Stern-Gerlach-Versuch demonstriert besonders anschaulich das ungewöhnliche Verhalten von Teilchen, die den Gesetzen der Quantenphysik unterliegen.

Nach diesen Gesetzen können Eigenschaften der Kleinstpartikel nicht jeden Wert annehmen, sondern nur bestimmte, so als könnte ein Auto nur mit exakt 50 oder 100 km/h fahren, aber nicht mit Geschwindigkeiten dazwischen.

Beim ursprünglichen Stern-Gerlach-Versuch wurde ein Strahl aus Silberatomen durch ein ungleichmäßiges Magnetfeld geführt, in dem die Atome unterschiedlich abgelenkt werden, je nachdem in welche Richtung ihr eigenes Magnetfeld zeigt. Aufgrund der Regeln der Quantenphysik kann das Magnetfeld der Silberatome nur in zwei Richtungen zeigen, weshalb der Stern-Gerlach-Versuch einen Strahl aus Silberatomen in zwei Richtungen aufspaltet.

Ein Cluster wie ein Einzelatom

Eine derartige Aufspaltung sahen die Darmstädter Chemiker für einen Strahl aus den von ihnen untersuchten Superatomen. Diese bestanden je aus einem Mangan-Atom, das im Zentrum eines Käfigs aus zwölf Zinn-Atomen eingebettet ist. Dieser Cluster ist sehr symmetrisch: er besitzt die Form eines Ikosaeders – ein Objekt aus 20 gleichseitigen Dreiecken. „Zwei Elektronen wandern vom Mangan zu den Zinnatomen. Die hohe Symmetrie bewirkt, dass die übrigen Elektronen des verbleibenden Manganions vom Zinnkäfig kaum etwas merken“, erklärt Rohrmann.

Diese Konfiguration macht den gesamten Cluster in mancher Hinsicht einem einzelnen Mangan-Atom ähnlich. Auch der Magnetismus ähnelt deshalb dem eines einzelnen Atoms. Dadurch zeigt sich eindrucksvoll der Einfluss der besonderen Symmetrie des Clusters auf das magnetische Verhalten.

Dank solchen Wissens könnten in der Nanotechnologie Materialien mit neuartigen, maßgeschneiderten Eigenschaften hergestellt werden – Materialien nach Design also.

Eine Herausforderung bei dem Experiment bestand darin, den Strahl der Superatome bei sehr niedrigen Temperaturen von 16 Kelvin (-257°C) zu erzeugen. Denn bei diesen Temperaturen vibriert der Cluster nur wenig. Ansonsten verliert er seine Symmetrie und damit sein atomähnliches Verhalten.

Ansprechpartner:
Prof. Dr. Rolf Schäfer, Tel. 06151/16-2498,
E-Mail: schaefer@cluster.pc.chemie.tu-darmstadt.de
Urban Rohrmann, Tel. 06151/16-2977,
E-Mail: rohrmann@cluster.pc.chemie.tu-darmstadt.de
Weitere Informationen:
Die Forschungsergebnisse werden in „Physical Review Letters“ veröffentlicht:
http://bit.ly/17sWzFq

Media Contact

Jörg Feuck Technische Universität Darmstadt

Weitere Informationen:

http://www.tu-darmstadt.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer