Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit dem Lift ins All

18.06.2013
Materialwissenschaftler der Universität Jena stellen neuen Polymer-Keramik-Verbundwerkstoff vor

Der Weltraum mit seinen unendlichen Weiten beflügelt nicht nur regelmäßig die Fantasie von Schöpfern von Science-Fiction-Literatur, Hollywood-Filmen oder TV-Serien. Auch für die Wissenschaft ist das All eine Herausforderung.


Im Polymerträger ausgerichtete Kohlenstoff-Nanoröhren mit dem Transmissionselektronenmikroskop abgebildet.

Und obwohl die Erforschung oder gar Besiedelung fremder Welten durch Raumfahrer wohl noch in ferner Zukunft liegt, wird der erdnahe Weltraum bereits heute intensiv genutzt: durch Raumstationen oder künstliche Satelliten, die Wetter und Klima erkunden oder zu Telekommunikationszwecken die Erde umrunden.

Die Materialien für Raumstationen oder Satelliten werden heute mit Raketen in die Erdumlaufbahn befördert. „Doch das ist nicht nur teuer, sondern verbraucht auch wertvolle Rohstoffe“, sagt Prof. Dr. Klaus D. Jandt von der Friedrich-Schiller-Universität Jena. Denn: die Raketen können nur einmal für den Transport genutzt werden. „Daher wird derzeit intensiv nach Alternativen für den Weg in den Orbit gesucht“, so der Inhaber des Lehrstuhls für Materialwissenschaft weiter.
Große Hoffnungen setzen Jandt und seine Kollegen in das Konzept eines Weltraumlifts, bei dem eine Gondel von der Erdoberfläche bis zu einer geostationären Raumstation fährt und Satelliten direkt an Ort und Stelle aussetzt. Den Jenaer Materialwissenschaftlern ist nun ein wichtiger Schritt bei der Entwicklung der Grundlagen dafür gelungen: Wie der Physiker Matthias Arras, Prof. Jandt und ihre Kollegen von der Uni Jena in der aktuellen Ausgabe des renommierten amerikanischen Journals „Carbon“ berichten, haben sie einen neuen Polymer-Keramik-Verbundstoff entwickelt, der Potenzial für einen späteren Einsatz in einem Weltraumlift hat (DOI: 10.1016/j.carbon.2013.04.049).

Basis des neuartigen Materials sind Kohlenstoff-Nanoröhrchen (engl. carbon nano tubes, kurz CNT). „Diese zigarrenförmigen Röhren aus reinem Kohlenstoff sind bis zu 30-mal zugfester als Stahl und dabei wesentlich leichter“, erläutert Jandt. Dies mache sie gerade für eine Anwendung als „Aufzugsseil“ in den Orbit interessant, das nicht nur extrem zugfest, sondern auch sehr leicht sein müsste. „Mit keinem anderen bisher bekannten Material wäre ein solches Seil zu realisieren“, weiß Jandt.

Doch die CNTs können ihre Eigenschaft nur dann entfalten, wenn sie alle in eine Richtung orientiert sind, „etwa so wie Zigarren in einer Zigarrenkiste,“ sagt Prof. Jandt und fährt fort: „Es bereitet immer noch Probleme, die Ausrichtung der CNTs, die einen Durchmesser von nur wenigen milliardstel Meter haben, zu erreichen“.

Und genau da ist den Jenaer Forschern nun ein Durchbruch gelungen. Sie brachten die CNTs zunächst in eine Polymerschmelze ein, die anschließend stark verstreckt (gezogen) wurde. „Durch das Ziehen an der Kunststoff-Schmelze entsteht ein hochorientierter Polymerträger“, sagt Matthias Arras, der Doktorand in Prof. Jandts Team ist. Dadurch ist der Polymerträger an sich schon sehr zugfest. Beim Erstarren der Polymerschmelze bildet sich ein amorpher Polymeranteil und es findet eine Grenzflächenkristallisation statt. Kristalle wachsen während des Ziehens geordnet auf den Kohlenstoff-Nanoröhrchen auf und verbinden sich mit diesen. „Die Polymerketten des amorphen Teils des Polymers verhaken sich während des Ziehens an den Kristallen auf den Kohlenstoff-Nanoröhren und ziehen diese so während der Verstreckung alle in eine Richtung“, erklärt Arras. „So entsteht eine extrem hohe Ausrichtung der Röhrchen, die so in Polymeren noch nicht beobachtet wurde.“

Da Kohlenstoff-Nanoröhrchen ähnliche physikalische Eigenschaften wie Keramiken haben, werde sie zu dieser Werkstoffgruppe gezählt. „Wir erwarten fantastische neue Eigenschaften des neuen Polymer-Keramik-Verbundwerkstoffes“, freut sich Professor Jandt, warnt aber vor zu großer Euphorie: „Bis zum Einsatz des Weltraumlifts werden sicher noch einige Jahre vergehen.“

Original-Publikation:
Arras MML et al. Alignment of multi-wall carbon nanotubes by disentanglement in ultra-thin melt-drawn polymer films. Carbon (2013), http://dx.doi.org/10.1016/j.carbon.2013.04.049

Kontakt:
Prof. Dr. Klaus D. Jandt
Otto-Schott-Institut für Materialforschung der Universität Jena
Löbdergraben 32, 07743 Jena
Tel.: 03641 / 947730
E-Mail: k.jandt[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung
13.07.2018 | Fachhochschule Südwestfalen

nachricht 3D-Druck: Stützstrukturen verhindern Schwingungen bei der Nachbearbeitung dünnwandiger Bauteile
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Mobilfunkstrahlung kann die Gedächtnisleistung bei Jugendlichen beeinträchtigen

19.07.2018 | Studien Analysen

Mit dem Nano-U-Boot gezielt gegen Kopfschmerzen und Tumore

19.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics