Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht statt Lösungsmittel: Kunststoffe bei Raumtemperatur reversibel verarbeiten

11.10.2016

Azobenzol-Polymere, aktuell in der Forschung als potenzielles Material für Beschichtungen und Druckfarben der Zukunft verwendet, lassen sich mit Licht bereits bei Raumtemperatur in die Schmelze überführen und somit umweltschonend und reversibel weiterverarbeiten. Da diese Kunststoffe in der trans- und in der cis-Konfiguration über unterschiedliche thermische Eigenschaften verfügen, sind Polymere mit der letzteren räumlichen Anordnung schon bei Zimmertemperatur flüssig und formbar. Deshalb müssen diese Kunststoffe in Zukunft weder erhitzt noch mit Lösungsmitteln versetzt werden, um in der industriellen Produktion Verwendung zu finden.

Robuste Kunststoffoberflächen, bei Möbelstücken oder Produktionsmaschinen, sind heute nicht mehr wegzudenken. Die aus langen Molekülketten bestehenden Polymere sind als Feststoff allerdings schwer zu verarbeiten.


Ultraviolettstrahlung (lila) trifft auf ein trans-Azobenzol-Polymer (gelb) und verflüssigt es dadurch zur cis-Konfiguration (rot).

Zhang Xue

Nur im zähflüssigen Aggregatszustand oder als Lösung lassen sie sich beispielsweise als Beschichtungsmaterial gut auftragen. Dafür werden bislang noch umständliche und vor allem umweltschädliche Verfahren eingesetzt, die Gewässer verunreinigen oder giftige Dämpfe als Nebenprodukt hervorrufen.

Licht ändert reversibel die Glasübergangstemperatur von Polymeren

Das Team von Dr. Si Wu, Projektleiter am Max-Planck-Institut für Polymerforschung (MPI-P), hat einen schonenderen und reversiblen Weg am Beispiel von Azobenzol-Polymeren entdeckt. Die Ergebnisse sind nun im Wissenschaftsmagazin Nature Chemistry erschienen:

In der stabilen trans-Isomerie – gekennzeichnet durch eine planare, also ebene und parallel geordnete Struktur mit einer maximalen Überlappung der Moleküle – liegt die Glasübergangstemperatur (TG) von Azobenzol-Polymeren bei ungefähr 50 Grad Celsius. Die instabilere, räumlich gewinkelte cis-Konfiguration besitzt dagegen eine Erweichungstemperatur von circa -10 Grad Celsius. Dank dieser niedrigen TG ist das letztere Isomer bei Raumtemperatur beweglich beziehungsweise zähflüssig genug, um sich verarbeiten zu lassen.

Indem die Forscher die Lichtschaltbarkeit von Azobenzol nutzen, können sie die Polymere von einer Konfiguration in die andere überführen. Deshalb bestrahlen sie die Polymere mit verschiedenen Wellenlängen: In der trans-Isomerie absorbiert Azobenzol eine für das menschliche Auge nicht sichtbare Ultraviolettstrahlung von 365 Nanometern.

Dies führt dazu, dass das Polymer in die cis-Konfiguration wechselt. In der industriellen Produktionskette kann der Kunststoff nun für den jeweiligen Verwendungszweck geformt werden. Um die räumliche Anordnung anschließend wieder in ein trans-Isomer umzuwandeln, wird das Polymer mit 530 Nanometern sichtbar grünem Licht bestrahlt und erhärtet. Alternativ lässt sich auch durch Wärme der thermodynamisch stabilere trans-Zustand erreichen.

Hochsensible Messungen geben Aufschluss

Um die abweichenden TG der beiden Konfigurationen zu ermitteln, haben die Wissenschaftler verschiedene Untersuchungsmethoden eingesetzt. Vor und nach dem Bestrahlen der Stereoisomere haben sie jeweils deren Eigenschaften gemessen, unter anderem mit der Dynamisch-mechanischen Analyse sowie mit der Dynamischen Differenzkalorimetrie. Diese Methoden erfassen die thermischen Eigenschaften von Kunststoffen und zeigen an, ob ein Polymer sich wie ein Feststoff oder eine Flüssigkeit verhält. Zudem lassen sich so die Phasenübergänge, also der Schmelz- und der Siedepunkt, bestimmen.

Den Lebenszyklus von Kunststoff verlängern und Müllberge verkleinern

Umwelt und Unternehmen profitieren gleichermaßen von den Erkenntnissen der MPI-P Wissenschaftler: „Die steigenden Mengen an Plastikmüll sind ein weltweites Problem“, so der Polymerchemiker Wu. „Unsere Ergebnisse tragen dazu bei, die Lebensspanne von Kunststoffen zu verlängern, indem sie bei Beschädigungen einfach verflüssigt, repariert und wieder gehärtet werden können. Die Polymere der Zukunft durchbrechen also den vorschnellen Wegwerf-Kreislauf, weil sie reversibel bearbeitbar sind.“

Pressestelle | Max-Planck-Institut für Polymerforschung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Oberflächeneigenschaften für holzbasierte Werkstoffe
14.08.2018 | INNOVENT e.V. Technologieentwicklung Jena

nachricht Europaweit einzigartiges Forschungszentrum geht an den Start
14.08.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Macht Sinn: Fraunhofer entwickelt Sensorsystem für KMU

15.08.2018 | Energie und Elektrotechnik

Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

15.08.2018 | Informationstechnologie

FKIE-Wissenschaftler präsentiert neuen Ansatz zur Detektion von Malware-Daten in Bilddateien

15.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics