Leipziger Physiker machen ordentlich Druck

Von den Ergebnissen der Untersuchungen zeigte sich die britische Royal Society so sehr beeindruckt, dass sie Mittel freigab, mit denen die Zusammenarbeit der Leipziger mit dem Cavendish Laboratory der Eliteuniversität Cambridge auf eine sicherere Basis gestellt werden konnte. Doch damit nicht genug: Auch der Deutsche Akademische Austauschdienst gab Geld, damit die Leipziger gemeinsam mit der Washington University in St. Louis und der Carnegie Institution in Washington D.C. an der Herstellung von neuen Druckkammern arbeiten können.

Wie Haase erläutert, hatte es zuvor schon jahrelange Versuche gegeben, mit Magnetresonanz unter hohem Druck zu arbeiten. Dabei war aber der Bereich oberhalb von 30.000 Atmosphären verschlossen geblieben. Thomas Meißner schaffte es, neue Wege zu gehen und das 70.000-fache des Normaldrucks zu erreichen. Er nutzte für seine Experimente Aluminium und konnte nachweisen, wie sich das Metall unter einem derartig hohen Druck verhält – und vor allem verändert. „Von Diamanten weiß man ja, dass sie unter hohem Druck aus Kohlenstoff entstehen“, nennt Haase ein geläufiges Beispiel. Nun aber hat Meißner gezeigt, dass auch Aluminium auf den hohen Druck reagiert und sich die elektrische Leitfähigkeit des Metalls verändert.

„Theoretisch konnte man schon berechnen, wie es sich wahrscheinlich auswirkt, aber den Nachweis können wir erst jetzt antreten“, lobt Haase den Forschungseifer seines Doktoranden. „Thomas hat sichtbar gemacht, was bisher nicht zu sehen war.“ Oder anderes ausgedrückt: „Grau ist alle Theorie, jetzt ist Farbe ins Spiel gekommen.“

Meißner selbst berichtet, dass er bereits Anfang vergangenen Jahres erkannt habe, dass die Fragestellung, der er sich widmete, noch offen war. Dass er sich auf Aluminium als Material stürzte, sei Zufall gewesen.

„Aluminium gibt bei der Hochdruck-Kernresonanz auf jeden Fall ein gutes Signal“, erzählt er. Die Auswertungen der Messungen dieses Signals lassen Aussagen über die Leitfähigkeit des Materials unter hohem Druck zu.

„Interessant ist das im Zusammenhang mit der Entwicklung neuer Supraleiter“, erklärt Meißner. Bislang müssen solche Supraleiter, über die zum Beispiel Strom völlig verlustfrei transportiert werden kann, in aufwändigen Verfahren gekühlt werden müssen. „Ziel ist es deshalb, Supraleiter zu entwickeln, die bei Raumtemperatur arbeiten“, sagt Meißner.

Dies würde auch den Einsatz supraleitender Magnete etwa in Magnetresonanztomographen ermöglichen, die heute noch gekühlt werden müssen, was den Einsatz natürlich verteuert.

Die nächsten Schritte schweben Meißner und seinem Betreuer bereits vor: An einem Einkristall eines Supraleiters sollen jetzt Messungen durchgeführt werden. Und dann gibt es auch noch die Theorie, die besagt, dass Wasserstoff unter sehr hohem Druck metallisch und dann supraleitend wird. Gelänge es den Leipziger Physiker, hierfür den Beweis zu erbringen, würde von Leipzig erneut eine Revolution ausgehen.

Weitere Informationen:
Prof. Jürgen Haase
Telefon: +49 341 97-32601
E-Mail: j.haase@physik.uni-leipzig.de

Media Contact

Jörg Arberger Universität Leipzig

Weitere Informationen:

http://www.uni-leipzig.de/

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Mehr Prozess- und Produktinnovationen in Deutschland als im EU-Durchschnitt

Mehr als jedes 3. Unternehmen (36 %) in Deutschland hat zwischen 2018 und 2020 (aktuellste Zahlen für die EU-Länder) neue Produkte entwickelt, Neuerungen von Wettbewerbern imitiert oder eigene Produkte weiterentwickelt….

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Partner & Förderer