Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leichte Werkstoffe, schwere Aufgaben

20.02.2014
Faserverbundwerkstoffe haben attraktive Eigenschaften, sind aber schwer zu bearbeiten. An der TU Wien gelang es, spezielle Bearbeitungsmethoden für Faserverbundmaterialien zu entwickeln.

Warum sollte man Metall verwenden, wenn man auch Faser-Kunststoff-Verbunde einsetzen kann?


Unbrauchbares Ergebnis mit herkömmlichen Methoden
TU Wien


Sauberes Ergebnis mit den Methoden aus dem FIBRECUT-Projekt
TU Wien

Faserverbundwerkstoffe sind leicht und belastbar, mit ihnen lassen sich sparsamere Autos oder leistungsfähigere Industriemaschinen bauen. Allerdings sind sie mit herkömmlichen Methoden schwierig zu bearbeiten. Das saubere Zuschneiden, das Bohren von Schraubenlöchern, der letzte Schliff ist bei Faserverbundwerkstoffen heikel und aufwändig.

An der TU Wien versucht man dieses Problem zu lösen: Durch neue Bearbeitungsmethoden soll die Fertigung von Produkten aus Faserverbundwerkstoffen ähnlich billig und einfach werden wie die Fertigung von Metallteilen.

Der Trick liegt im Kohlenstoff

Das Forschungsteam von Richard Zemann (Institut für Fertigungstechnik und Hochleistungslasertechnik, TU Wien) verwendet Kohlenstofffasern, die nur einige Mikrometer dick sind. Damit sie ihre Form behalten, bettet man sie in Harz ein. So entsteht eine leichte, aber extrem steife Struktur. „Durch die festen Bindungen zwischen den Kohlenstoffatomen erzielt man in Faserrichtung extrem gute mechanische Eigenschaften“, erklärt Richard Zemann. Die Werkstücke wiegen nur ein Viertel dessen, was ein Stahlwerkstück desselben Volumens auf die Waage bringt, und trotzdem können die Kohlenstoff-Werkstoffe Stahl in ihrer Steifigkeit sogar übertreffen.

Besonders interessant sind diese Werkstoffe etwa für die Auto- oder die Flugzeugindustrie: Jedes eingesparte Kilogramm bedeutet eine Reduktion des Treibstoffverbrauchs und des CO2-Ausstoßes. „In der Industrie blickt man schon seit Jahren mit großem Interesse auf Faserwerkstoffe“, sagt Richard Zemann – trotzdem haben sich die Fasern in der Fertigung von Massenprodukten noch nicht durchgesetzt, und dafür gibt es einen entscheidenden Grund: Die feine Endbearbeitung der Werkstoffe ist sehr schwierig.

Platten formen ist einfach, Löcher bohren ist schwer

In der Metallindustrie gibt es gut erprobte, weitverbreitete Verfahren der Endfertigung: Zerspanen, Bohren oder Fräsen ist bei Metallteilen kein Problem. Versucht man allerdings, mit denselben Methoden Faserverbundplatten zu bearbeiten, schädigt man das Material. Es entstehen unbrauchbare Bohrlöcher und Schnittlinien, die dann aufwändig per Hand nachbearbeitet werden müssen – und das ist für Massenproduktion natürlich viel zu teuer.

„Man denkt zwar auf der ganzen Welt darüber nach, wie man aus Karbonfasern am besten Werkstücke formt – doch mit der Endbearbeitung beschäftigen sich nur wenige Forschungsgruppen“, sagt Zemann. Er gründete daher die Initiative Fibrecut – ein Projekt, das neue Methoden für die automatisierte Endbearbeitung von Faserverbundwerkstoffen hervorbringt. Ein theoretisches Modell wird entwickelt, das die physikalischen Vorgänge beim Zerspanen beschreibt.

Damit lässt sich dann abschätzen, wie man in einer bestimmten Situation das beste Ergebnis erzielt werden kann. Wenn man Parameter wie die Drehzahl und die Vorschubgeschwindigkeit eines Bohrers richtig anpasst, kann man plötzlich bessere Ergebnisse erhalten. Getestet werden auch Assistenzsysteme wie ein Schwingtisch, der das Werkstück während eines Schneide- oder Bohrprozesses in Bewegung versetzt. An weiteren Verbesserungen wird gearbeitet: Ganz neue Bearbeitungswerkzeuge mit Beschichtungen werden entwickelt, die speziell auf Faserverbundwerkstoffe ausgelegt sind.

Die Ergebnisse sind eindeutig: Mit den richtigen Zerspanungsmethoden lassen sich die Faserverbundwerkstoffe tatsächlich bearbeiten. „Es ist nicht unmöglich, man braucht einfach viel Know-How, das es in der Industrie heute einfach noch nicht in ausreichendem Maß gibt“, erklärt Richard Zemann. Daher ist in der Industrie auch der Bedarf nach akademischen Kooperationspartnern sehr hoch.

Vom Auto bis zur Fertigungsanlage

Freilich werden die Faserverbundwerkstoffe in nächster Zeit sicher noch teurer sein als herkömmliche Ware. „Man wird nicht unbedingt Stoßstangen oder Kotflügel aus Kohlenstofffasern bauen, weil diese Teile oft ersetzt werden müssen“, meint Richard Zemann. Doch viele andere Teile des Autos, die etwas geschützter im Inneren des Fahrzeuges liegen, werden wohl bald aus Faserwerkstoffen hergestellt werden. Für die Flugzeug- und Raumfahrtindustrie ist das Material besonders attraktiv, dort spielt die Einsparung von Gewicht eine noch größere Rolle. Doch nicht nur für Fahrzeuge sind Faserverbundwerkstoffe sinnvoll: Von der Papierwalze, die aufgrund des leichtere Materials größer dimensioniert werden kann, bis zum Hydraulikzylinder aus Karbonfasern gibt es unzählige Anwendungsmöglichkeiten.

„Dass sich Faserwerkstoffe durchsetzen werden, steht für mich heute außer Frage“, ist Richard Zemann überzeugt. „Einen Technologievorsprung werden jene Unternehmen haben, die als erste die richtigen Bearbeitungsmethoden einsetzen – und dafür brauchen sie Forschungskompetenz.“

Rückfragehinweis:
Dipl.-Ing. Richard Zemann
Institut für Fertigungstechnik und Hochleistungslasertechnik
Technische Universität Wien
Adolf Blamauerg. 1-3, 1030 Wien
T: +43-1-58801-31165
richard.zemann@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund
22.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Nah dran an der Fiktion: Die Außenhaut für das Raumschiff „Enterprise“?
22.06.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics