Kobalt-Kristall revolutioniert Sauerstoffspeicherung

Kristalle: binden enorme Mengen Sauerstoff an sich (Foto: sdu.dk/en)

Forscher der University of Southern Denmark http://sdu.dk/en haben ein Material entdeckt, dass extrem hohe Mengen an Sauerstoffmolekülen an sich bindet und speichert.

Dabei handelt es sich um neuartige Kristalle, deren Hauptbestandteil Kobalt ist. Dank dieser revolutionären Methode kann im Vergleich zur normalen Atemluft in etwa die 160-fache Konzentration an Sauerstoff aufgenommen werden.

Erübrigt Sauerstofftanks

Die Wissenschaftler hoffen mithilfe dieses innovativen Ansatzes, das Atmen unter Wasser ohne unhandliche Sauerstofftanks zu ermöglichen.

Zusätzlich könnte diese Entdeckung auch Patienten eine Erleichterung verschaffen, die unter Atembeschwerden aufgrund von Lungenproblemen leiden. Ungefähr zehn Liter Volumen der Kristalle sind notwendig, um den gesamten Sauerstoff eines Raumes zu absorbieren.

Vergleichbar mit Hämoglobin

Die Sauerstoffmoleküle werden an die Kristalle gebunden und erst freigegeben, wenn Umgebungsdruck sowie -temperatur bestimmte Werte erreicht haben.

„Das Material ist sowohl Sensor als auch Container für Sauerstoff. Wir können es verwenden, um ihn aufzunehmen, zu speichern und zu transportieren. Aufgrund dieser Eigenschaften kann man es als eine Art künstliches Hämoglobin betrachten“, erklärt Forschungsleiterin Christine McKenzie von der University of Southern Denmark.

Media Contact

Carolina Schmolmüller pressetext.redaktion

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer