Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Knochen als Vorbild: Leichter Metallschaum wird mit Beschichtung beinhart – hält Explosionen stand

14.03.2019

Sie sind so stark, dass sie nicht nur als Aufprallschutz im Auto, sondern auch gegen Stoßwellen bei Sprengungen schützen: Die Materialforscher Stefan Diebels und Anne Jung von der Universität des Saarlandes können extrem belastbare und zugleich luftig leichte Metallschäume für vielseitige Anwendungen maßschneidern. Vorbild aus der Natur ist der Aufbau von Knochen. Mit einem patentierten Beschichtungsverfahren schaffen sie äußerst stabile, poröse Werkstoffe etwa für den Leichtbau. Als Grundgerüst dienen Alu- oder Kunststoffschäume, ähnlich einem einfachen Haushaltsschwamm.

Ihr Verfahren zeigen die Forscher und ihre aus der Uni gegründete Firma Mac Panther Materials GmbH (Bremen) auf der Hannover Messe: Vom 1. bis 5. April in Halle 2 am saarländischen Forschungsstand B46.


Die Materialforscher Stefan Diebels (l.) und Anne Jung können belastbare und zugleich leichte Metallschäume für vielseitige Anwendungen maßschneidern. Vorbild aus der Natur ist der Aufbau von Knochen

Foto: Oliver Dietze

Knochen sind eine geniale Entwicklung der Natur: Sie sind stabil und hart im Nehmen, halten Belastungen aus fast wie Stahl. Trotzdem sind sie so leicht, dass Mensch wie Tier an ihnen nicht schwer zu schleppen haben. Das Geheimnis liegt in einer harten Hülle und einem Gerüst aus feinen Bälkchen, die im Innern des Knochens Platz lassen für ungezählte Hohlräume.

Die Konstruktion spart Material und macht den Knochen leicht. Metallschäume bilden dieses Vorbild nach: Diese porösen Werkstoffe werden aus Metallen hergestellt und sehen aus wie ein Schwamm. Die heute üblichen Schäume sind zwar leicht, jedoch ist es aufwändig und teuer, sie herzustellen. Auch sind die Bälkchen für viele Anwendungen zu weich und nachgiebig – so etwa beim heute am meisten geschäumten Aluminium.

„Deshalb konnten sich Metallschäume bisher nicht auf dem Markt durchsetzen“, sagt der Werkstoffwissenschaftler Stefan Diebels, Professor für Technische Mechanik an der Universität des Saarlandes.

Sein Forscherteam hat einen Weg gefunden, das Gerüst der Metallschäume tiefgreifend zu verstärken, und hat so einen leichten, extrem stabilen und variantenreichen Werkstoff geschaffen. Diebels und die Materialforscherin Anne Jung beschichten jedes der Bälkchen mit einem patentierten Verfahren derart, dass der so von innen heraus stabilisierte Metallschaum extremen Belastungen standhält. Dabei ist er nach wie vor luftig leicht.

Als Gerüst nutzen sie Aluminiumschäume und inzwischen sogar günstige Kunststoffschäume aus Polyurethan, die allein durch die Beschichtung stark werden. „Die so entstehenden Metallschäume haben eine geringe Dichte und große Oberfläche bei kleinem Volumen. Im Verhältnis zu ihrem Gewicht sind sie äußerst steif und fest“, erklärt Stefan Diebels. Sie sind so stark, dass sie als mobile Schutzwände Stoßwellen bei Explosionen abfangen. Auch bei Sprengungen unter Wasser können sie Schall- und Druckwellen einfach „schlucken“ – und so empfindliche Meeresbewohner vor Folgen schützen.

„Wir denken aber vor allem auch an weniger spektakuläre Einsatzmöglichkeiten wie den Leichtbau“, erklärt Privatdozentin Anne Jung. Sie erhielt für die erste ihrer zwei Doktorarbeiten über die Metallschäume den Deutschen Studienpreis der Körber-Stiftung für „die wichtigste Dissertation des Jahres mit besonderer gesellschaftlicher Bedeutung.“ Nach dem Vorbild der Natur können viele Produkte leichter und stabiler werden. So können tragende Teile in Autos und Flugzeugen aus dem Metallschaum hergestellt werden:

„Sie können als steife Verstrebung der Karosserie verbaut werden und zugleich die Funktion des Aufprallschutzes übernehmen. Sie absorbieren viel Energie und fangen die Wucht eines Aufpralls ab, wenn einige der Porenlagen brechen“, sagt Anne Jung. Die Einsatzmöglichkeiten der Schäume sind vielseitig: als Katalysator, da das Material durchströmt werden kann, als Schwingungsdämpfung oder als Hitzeschild, da es sehr hitzebeständig ist. Auch kann es als elektromagnetische Abschirmung oder sogar in der Architektur verwendet werden, etwa für schalldämmende Verkleidungen oder als Designelement.

Für die Beschichtung nutzen die Forscher ein galvanisches Bad. Der kniffligste Teil bestand nämlich darin, die hauchfeine Beschichtung tief und vor allem gleichmäßig im Innern des Schaums aufzutragen. Das Problem dabei: „Der Metallschaum wirkt wie ein Faraday-Käfig“, sagt Anne Jung. Sein Inneres ist rundum von leitfähigem Material umgeben, daher wird Strom wie auch die Beschichtung außen herum abgeleitet und läuft nicht hindurch - wie ein Blitz ums Auto. Die Materialforscherin schaffte mit einem speziellen Anoden-Käfig den Durchbruch und kann den Schaum jetzt gleichmäßig und durch und durch nanokristallin beschichten. „Das patentierte Verfahren funktioniert auch industriell bei großflächigen Schäumen“, sagt sie.

Mit ihren wissenschaftlichen Veröffentlichungen zählt die Saarbrücker Gruppe inzwischen weltweit zu den führenden in der mikromechanischen Charakterisierung der Metall-Bälkchen. Mit Experimenten, Simulationen, Zug- und Druckversuchen, Lichtmikroskopie sowie Röntgencomputertomographie haben sie Struktur, Geometrie der Poren und die Krümmung der Stege untersucht und unter anderem gezeigt, wie verschieden dicke Nanobeschichtungen dem Metallschaum unterschiedliche Materialeigenschaften verleihen. Indem sie die Beschichtung, ihre Dicke oder die Porengröße variieren, können sie das Material verschiedenen Anforderungen anpassen. So macht etwa die Beschichtung mit Nickel die Schäume stabil, mit Kupfer gut wärmeleitend, mit Silber antibakteriell und mit Gold sieht der Schaum als Dekoration gut aus. Die Forscher arbeiten daran, den Prozess und das Material weiter zu optimieren. Auch Studenten und Doktoranden sind an diesen Forschungen beteiligt.

Hintergrund

Um diese Forschungsergebnisse in die Praxis zu bringen, haben die Forscher in einem Pilotprojekt zum Technologietransfer gemeinsam mit der Kontaktstelle für Wissens- und Technologietransfer der Universität des Saarlandes und dem externen Gründerteam Dr. Andreas Kleine und Michael Kleine die Mac Panther Materials GmbH mit Sitz in Bremen gegründet. Beteiligt am Unternehmen ist neben Anne Jung und Professor Diebels die „Universität des Saarlandes Wissens- und Technologietransfer GmbH“ (WuT).

Information und Kontakt: http://www.macpanther-materials.de
Mehr hierzu: http://www.kwt-uni-saarland.de/de/meta/news/artikel/datum/2017/04/26/die-saar-uni-geht-neue-wege-im-technologietransfer.html

Kontakt für die Medien:
Professor Dr.-Ing. Stefan Diebels:
Tel.: 0681 / 302-3958, -2887; E-Mail: s.diebels(at)mx.uni-saarland.de
Privatdozentin Dr.-Ing. Dr. rer. nat. Anne Jung:
Tel.: 0681 / 302-3958, -2169, E-Mail: anne.jung(at)mx.uni-saarland.de
Dr. Andreas Kleine (Mac Panther Materials GmbH)
Tel.: +49 (0) 421-5 57 16-6, E-Mail: a.kleine@macpanther-materials.de

Weitere Pressefotos für den kostenlosen Gebrauch finden Sie unter https://www.uni-saarland.de/universitaet/aktuell/pm/pressefotos.html. Bitte beachten Sie die Nutzungsbedingungen.

Englische Version der Presseinformation:
https://www.uni-saarland.de/nc/universitaet/aktuell/artikel/nr/20594.html

Der saarländische Forschungsstand wird organisiert von der Kontaktstelle für Wissens- und Technologietransfer der Universität des Saarlandes (KWT). Sie ist zentraler Ansprechpartner für Unternehmen und initiiert unter anderem Kooperationen mit Saarbrücker Forschern. https://www.kwt-uni-saarland.de/

Wissenschaftliche Ansprechpartner:

Professor Dr.-Ing. Stefan Diebels:
Tel.: 0681 / 302-3958, -2887; E-Mail: s.diebels(at)mx.uni-saarland.de
Privatdozentin Dr.-Ing. Dr. rer. nat. Anne Jung:
Tel.: 0681 / 302-3958, -2169, E-Mail: anne.jung(at)mx.uni-saarland.de

Claudia Ehrlich | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen
17.10.2019 | Universität des Saarlandes

nachricht Für höhere Reichweiten von E-Mobilen: Potentiale von Leichtbauwerkstoffen besser ausschöpfen
17.10.2019 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics