Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Klimafreundliche Architektur durch natürliche Klappmechanismen

30.11.2017

Bewegliche Komponenten an Gebäuden wie etwa Jalousien, deren Aufbau an natürlichen Lösungen abgeschaut wurde, daran forscht ein Team der Technischen Universität München (TUM), der Universität Freiburg und der Universität Stuttgart. Sie sollen mit Antriebselementen bestückt werden, die sich ohne Energiezufuhr bewegen können. Das Vorbild sind Zapfen von Nadelhölzern, die sich durch unterschiedliches Quellverhalten ihres Gewebes bei Feuchtigkeit öffnen oder bei Trockenheit schließen.

Weltweit verursacht die Nutzung von Gebäuden 40 Prozent des gesamten Energieverbrauchs. Rund die Hälfte davon wird für die Klimatisierung aufgewandt. Zwar kann durch Jalousien und andere bewegliche Fassadenelemente die Licht- und Wärmedurchlässigkeit der Gebäudehülle optimiert werden, doch verbrauchen deren Elektromotoren ihrerseits Energie, um diese Systeme zu bewegen.


Reife Kiefern- und Tannenzapfen schließen bei Regen ihre Schuppen, um den Samen zu schützen. Ist es dagegen trocken, öffnen sie sich.

Foto: C. Zollfrank/ TUM


Das Vorbild für die beweglichen Komponenten an Gebäuden sind Zapfen von Nadelhölzern, die sich bei Feuchtigkeit öffnen (rechts) oder bei Trockenheit schließen.

Foto: C. Zollfrank/ TUM

„Eine nachhaltige Architektur braucht dringend neue Werkstoffe, wenn sie künftig den hohen Anforderungen von Energieeffizienz und Klimaschutz gerecht werden will", sagt der Chemiker, Forstwissenschaftler und Materialforscher Professor Cordt Zollfrank.

Am Lehrstuhl für Biogene Polymere am Campus Straubing für Biotechnolgie und Nachhaltigkeit der TUM erforscht er die Grundlagen dafür. Sein Ziel ist es, Antriebselemente und Aktuatoren zu entwickeln, die ohne Energieverbrauch Signale in mechanische Bewegung umwandeln.

Gemeinsam mit Architekten, Bauingenieuren und Botanikern hat er zukunftsweisende Wege gefunden, wie sich mithilfe natürlicher Mechanismen die Energiebilanz von Gebäuden verbessern lässt. In einem gemeinsamen Artikel im Fachmagazin „Advanced Materials" berichtet das Team über den Stand der Forschung auf diesem Gebiet und zeigt die Möglichkeiten der Modelle aus der Pflanzenwelt auf.

Das Material ersetzt den Motor

Reife Kiefern- und Tannenzapfen schließen bei Regen ihre Schuppen, um den Samen zu schützen. Ist es dagegen trocken, öffnen sie sich und geben ihn frei. Bei dieser Bewegung spielt die Zusammensetzung der Zellwände eine wichtige Rolle. Sie setzen sich vor allem aus dem wenig quellfähigen Lignin und der gut quellenden Cellulose zusammen. Wegen der unterschiedlichen Ausrichtung der Cellulosefibrillen in den Geweben der Schuppen, krümmen sich diese Schuppen bei hoher Luftfeuchtigkeit nach innen und bei Trockenheit nach außen.

„Das Spannende daran ist, dass die Energie für diese Bewegungen nicht aus Stoffwechselvorgängen stammt, sondern allein auf physikalischen Mechanismen und Materialeigenschaften beruht", sagt Professor Zollfrank. Durch die Kombination von Materialien mit unterschiedlichem Quellvermögen ist es ihm bereits gelungen, solche biomimetischen Antriebselemente, genannt Aktuatoren zu entwickeln. Auch diese bestehen aus zwei Schichten von Materialien, die unterschiedlich viel Flüssigkeit aufnehmen und verhalten sich ähnlich wie das Vorbild aus der Natur.

Physikalische Grenzen überwinden

Jedoch bevor die Architektur sie in großem Stil einsetzen kann, müssen die Materialforscher und -forscherinnen noch ein Problem lösen, das mit der Vergrößerung zusammenhängt: Je größer die Zelle oder das Gewebe, desto länger braucht das Wasser, um durch ihre Poren nach innen zu dringen. Was bei einem Kiefernzapfen in zwei Stunden geht, würde bei einem Gebäude mehrere Jahre dauern. Um die Hydraulik von Kiefernzapfen für Anwendungen in der Architektur zu übertragen, muss folglich eine physikalische Grenze überwunden werden.

Alles eine Frage der richtigen Verbindung

Dazu schlägt Zollfrank eine Art Umstrukturierungsverfahren auf Materialebene vor. „Wir entkoppeln die Gewebegröße und bringen das Ganze auf Größe der einzelnen Zelle", erklärt er. Durch geschickte Querverbindungen entsteht so ein lockerer Zellverband, dessen einzelne Bestandteile sich dennoch wie einzelne Zellen verhalten und sehr schnell Wasser aufnehmen.

„Die Frage ist nun, wie solche Querverbindungen möglichst effizient gestalten und wie in beliebiger Größe hinbekommen", sagt Zollfrank. Für spätere praktische Anwendungen kann er sich aber auch poröse Polymermaterialien vorstellen, deren Poren mit einer extrem wasseranziehenden Flüssigkeit (Hydrogel) gefüllt sind. Daran arbeiten die Materialforscher bereits. Welche Lösung letztlich ihren Weg in die Architektur der Zukunft finden wird, ist damit nur noch eine Zeitfrage.

Publikation
Simon Poppinga, Cordt Zollfrank, Oswald Prucker, Jürgen Rühe, Achim Menges, Tiffany Cheng, and Thomas Speck: Toward a New Generation of Smart Biomimetic Actuators for Architecture, Advanced Materials 10/2017. DOI: 10.1002/adma.201703653.

Kontakt
Prof. Dr. Cordt Zollfrank
Professur für Biogene Polymere
Campus für Biotechnologie und Nachhaltigkeit
Technische Universität München
Tel.:+49 9421 187 450
E-Mail: cordt.zollfrank@tum.de

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34331/ Artikel

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung
13.07.2018 | Fachhochschule Südwestfalen

nachricht 3D-Druck: Stützstrukturen verhindern Schwingungen bei der Nachbearbeitung dünnwandiger Bauteile
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics