Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Kinderstube der Nanopartikel

08.02.2013
Ein neues Modell ermöglicht Vorhersagen, wie Nanopartikel entstehen und gibt Hinweise, wie sich der Prozess steuern lässt

Nanopartikel sind vielseitige Hoffnungsträger: Sie sollen als Vehikel für medizinische Wirkstoffe oder Kontrastmittel ebenso dienen wie als elektronische Speicherpunkte oder Verstärkung in Stützmaterialien.


Immer dem Magnetit-Kompass nach: In Mikroorganismen, die sich am Magnetfeld der Erde orientieren, reihen sich rund 20 Magnetosome zu feinen Nadeln auf. Sie enthalten in einer Proteinhülle für jede Art charakteristisch geformte Nanoteilchen aus magnetischem Eisenoxid. © MPI für Kolloid- und Grenzflächenfoschung


Wenn sich Magnetit-Nanoteilchen aus einer Lösung von Eisensalzen bilden, lagern sich an einen Kern Primärpartikel (Pfeile) an, die höchstens zwei Nanometer groß sind (der weiße Balken entspricht zehn Nanometern). Für diesen nicht-klassischen Weg des Kristallwachstums haben Max-Planck-Forscher ein Modell entwickelt. Mit dessen Hilfe erklären sie, wann aus den Primärpartikeln direkt eine kristalline und wann zunächst eine ungeordnete Struktur entsteht, die sich anschließend zu einem Kristall umformt.
© Nature Materials

Um sie für die verschiedenen Anwendungen gezielt in Form zu bringen, leisten Forscher des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam-Golm und der Universität im niederländischen Eindhoven nun einen grundlegenden Beitrag. Sie haben in einer Studie an Magnetit-Nanopartikeln ein Modell entwickelt, wie sich abhängig von den physikalischen Eigenschaften kristalline Teilchen eines Materials bilden.

Nanopartikel aus Magnetit nutzen manche Bakterien, um sich im Magnetfeld der Erde zu orientieren, sie finden aber auch als Speichermaterial oder Kontrastmittel für Kernspin-Untersuchungen Verwendung. Zu verstehen, wie sie wachsen, könnte helfen, Nanopartikel mit gewünschten Eigenschaften gezielt zu züchten.

In mancher Hinsicht ähnelt Materialdesign der Kindererziehung: Viele Eigenschaften sind von Natur aus gegeben, andere werden durch die Bildung erworben – und das entscheidende passiert dabei ganz am Anfang. In die Kinderstube von Magnetit-Nanopartikeln hat nun ein Team um Damien Faivre, Leiter einer Forschungsgruppe am Max-Planck-Institut für Kolloid- und Grenzflächenforschung, geblickt.

Magnetit-Partikel, die sich zu feinen Nadeln anordnen, dienen manchen Meeresbakterien als Kompass, wenn sie sich auf der Suche nach dem Meeresgrund am Magnetfeld der Erde orientieren. Synthetische Magnetit-Teilchen werden aber auch als Speichereinheiten magnetischer Datenträger, in Tinten, magnetischen Flüssigkeiten oder medizinischen Kontrastmitteln eingesetzt. Anhand ihrer Beobachtungen an den Magnetit-Nanoteilchen haben die Potsdamer Forscher nun die etablierte Theorie erweitert, wie aus einer Lösung Kristalle eines Materials entstehen.

Das klassische Modell erklärt die Entstehung vieler Nanopartikel nicht

In der übersättigten Lösung eines Materials ballen sich zunächst spontan, das heißt mehr oder weniger zufällig, einige Atome und Moleküle zu einem Keim zusammen, der dann weiter wächst. Der klassischen Vorstellung des Kristallwachstums zufolge fängt der Keim gelöste Atome oder Moleküle ein. Dabei kann entweder unmittelbar ein perfekt geordneter Kristall oder erst ein amorphes, also unordentliches Konglomerat entstehen, das sich dann zu einem Kristall umstrukturiert.

Über welchen der beiden Wege sich der Kristall bildet, hängt davon ab, ob die kristalline oder die ungeordnete Struktur eine niedrigere Energie aufweist. Die entscheidenden Eigenschaften sind hierbei die Oberflächenenergien der kristallinen und der ungeordneten Variante sowie die Energiebeträge, die frei werden, wenn sich Atome oder Moleküle zu der einen oder der anderen Form verbinden. Eine hohe Oberflächenenergie treibt den Energieaufwand für das Wachstum einer Variante in die Höhe, ein großer Energiegewinn durch die entstehenden Bindungen senkt ihn.

„In den vergangenen Jahren gab es immer mehr Hinweise, dass zahlreiche Mineralien nicht nach diesem Modell wachsen“, sagt Damien Faivre. „Sie lagern bei ihrer Entstehung offenbar nicht einzelne Atome oder Moleküle, sondern Primärpartikel an, die bis zu wenigen Nanometern groß sind und sich nur vorübergehend bilden.“ Das passiert etwa, wenn Kristalle aus Calciumcarbonat und Calciumphosphat entstehen, die Muschelschalen beziehungsweise Knochen härten. Faivre und sein Team haben nun festgestellt, dass auch Magnetit-Nanopartikel wachsen, indem sie nur zwei Nanometer kleine Primärpartikel aufnehmen. Das beobachteten die Forscher in einem Transmissions-Elektronenmikroskop, das bei Temperaturen weit unter dem Gefrierpunkt arbeitet und daher besonders feine Strukturen abbildet.

Die Stabilität der Primärpartikel wird zu einem entscheidenden Faktor
„Ob aus den kleinen Nanopartikeln direkt größere Nanokristalle entstehen oder ob sie zunächst auch ein ungeordnetes Teilchen formen, lässt sich anhand des klassischen Modells nicht entscheiden“, sagt Damien Faivre. Doch wer Magnetit- oder Calciumcarbonat-Nanopartikel gezielt züchten will, muss diese Frage beantworten können. Daher entwickelten er und seine Kollegen ein neues Modell, das die Primärpartikel berücksichtigt.

In dem neuen Modell wird die Stabilität der Nanopartikel zu einem wichtigen Faktor. So wichtig, dass er eine Vorhersage des klassischen Modells sogar ins Gegenteil verkehren kann. „Je stabiler die Primärpartikel sind, desto wahrscheinlicher bildet sich direkt eine kristalline Struktur“, erklärt Faivre. „In manchen Fällen, in denen dem klassischen Modell zufolge erst eine ungeordnete Struktur entstehen soll, ergibt unser Modell, dass sich direkt ein Kristall bildet.“ Genau das ist beim Magnetit der Fall.

Im nächsten Schritt stehen Untersuchungen der Primärpartikel an

Ob Kristalle nach dem klassischen oder dem von Damien Faivres Team aufgestellten Modell wachsen, hängt davon ab, ob dabei Atome und Moleküle oder die winzigen Primärpartikel mitmischen. „Das weiß man wie in unserem Fall entweder aus Beobachtungen oder man schätzt es anhand der physikalischen Eigenschaften des Materials ab“, erklärt Faivre.

Von dem Einblick in die Kinderstube der Nanopartikel bis zu einer Anleitung, um ihr Wachstum gezielt zu steuern, müssen die Forscher jedoch noch zahlreiche offene Fragen klären. „Im nächsten Schritt werden wir die Primärpartikel und ihre Eigenschaften genauer untersuchen“, sagt Damien Faivre. Wenn die Forscher nämlich die Stabilität der Teilchen, die sich ein wachsendes Nanoteilchen einverleibt, kontrollieren können, bietet sich ihnen auch eine Möglichkeit, die Eigenschaften des Nanopartikels zu beeinflussen. Auch das ist bei Nanokristallen kaum anders als bei heranwachsenden Kindern: Was aus ihnen wird, hängt auch davon ab, wie sie gefüttert werden.

Ansprechpartner

Dr. Damien Faivre,
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9405
E-Mail: Damien.Faivre@­mpikg.mpg.de

Originalpublikation
Jens Baumgartner, Archan Dey, Paul H. H. Bomans, Cécile Le Coadou, Peter Fratzl, Nico A. J. M. Sommerdijk und Damien Faivre
Nucleation and growth of magnetite from solution
Nature Materials, online veröffentlicht 3. Februar 2013; DOI: 10.1038/NMAT3558

Dr. Damien Faivre, | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6916781/magnetit_nanopartikel_kristallisation

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Oberflächeneigenschaften für holzbasierte Werkstoffe
14.08.2018 | INNOVENT e.V. Technologieentwicklung Jena

nachricht Europaweit einzigartiges Forschungszentrum geht an den Start
14.08.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics