Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Keramische Partikel liefern digitale Röntgenplatten „aus der Sprühdose“

10.11.2015

Forscher vom INM in Saarbrücken haben Materialien untersucht, mit denen zukünftig Röntgendetektoren kostengünstig im großen Maßstab und mit hoher Bildauflösung hergestellt werden können.

Digitale Röntgensysteme sind aus der Gesundheitsversorgung nicht mehr wegzudenken. Der frühere Röntgenfilm wird darin durch einen sogenannten Röntgendetektor ersetzt. Heutige Detektoren sind teuer, empfindlich und in der Auflösung begrenzt.


Die elektronenmikroskopische Aufnahme zeigt die Verteilung der keramischen Partikel im Kunststoff in den gesprühten Röntgendetektoren.

Quelle: Copyright INM; frei in Zusammenhang mit dieser Meldung.

Nun ist es Wissenschaftlern im Kooperationsprojekt HOP-X gelungen, neue Materialien für Detektoren zu entwickeln: Sie betteten dazu Keramik-Partikel in einen leitfähigen Kunststoff ein. Die Bestandteile dieses „Komposit-Detektors“ lassen sich in Lösungsmittel einrühren und dann wie ein Lack durch Sprühen auftragen. Damit können zukünftig Röntgendetektoren kostengünstig im großen Maßstab und mit hoher Bildauflösung hergestellt werden.

Diese Ergebnisse wurden jüngst in der Zeitschrift Nature Photonics veröffentlicht.

Röntgendetektoren bestehen aus einer Szintillatorschicht und einer Photodiode. Die Szintillatorschicht wandelt Röntgenstrahlung in sichtbares Licht um, welches die Photodiode aufnimmt. Solche Detektoren sind schwer herzustellen und teuer. Ihre Auflösung ist begrenzt, weil sich die aufgefangenen Signale gegenseitig stören können.

Um Röntgendetektoren kostengünstiger herzustellen, beschritten Wissenschaftler der Siemens Healthcare GmbH, des INM –Leibniz-Institut für Neue Materialien, der Universitäten Erlangen und Hamburg und weiterer Partner im Projekt HOP-X einen neuen Weg: Sie verwendeten Materialien, die für flexible Solarzellen entwickelt wurden und passten sie auf Röntgenstrahlung an.

Die Wissenschaftler am INM stellten dazu keramische Partikel her, die im Röntgenlicht aufleuchten. Diese betteten sie in einen leitfähigen Kunststoff ein. Er wandelt das Licht in elektrischen Strom um, der vom Röntgengerät registriert wird. Die Forscher untersuchten außerdem die Strukturen, die aus Partikeln und Kunststoff gebildet werden.

„Wir untersuchten die Proben mit elektronenmikroskopischen Verfahren anhand dünner Schichten, die wir mit Ionenstrahlen aus dem Komposit schnitten“, sagt Tobias Kraus, Leiter des Programmbereichs Strukturbildung am INM.

„Mithilfe dieser Analytik konnten wir zeigen, wie sich die Partikel und der Kunststoff bei verschiedenen Mischverhältnissen anordnen. Dadurch war es unseren Projektpartnern möglich, die Mischverhältnisse für die empfindlichsten Röntgendetektoren abzuleiten.“ Dann seien scharfe Röntgenbilder auch bei geringer Strahlungsdosis möglich.

Die Ergebnisse zeigen, dass Röntgendetektoren aus diesen neuen Materialien die strengen Anforderungen der Medizintechnik erfüllen können. Derzeit arbeiten die Forscher an Prozesstechniken, um größere Detektoren herzustellen.

Hintergrund:
Neben dem INM waren am Projekt HOP-X die Siemens Healthcare GmbH, die Merck KgaA, sowie die CAN GmbH beteiligt. Das im Herbt 2015 beendete, dreijährige Verbundprojekt HOP-X wurde vom Bundesministerium für Bildung und Forschung mit 1,86 Millionen Euro unterstützt.

Originalpublikation:
Patric Büchele, Moses Richter, Sandro F. Tedde, Gebhard J. Matt, Genesis N. Ankah, Rene Fischer, Markus Biele, Wilhelm Metzger, Samuele Lilliu, Oier Bikondoa, J. Emyr Macdonald, Christoph J. Brabec, Tobias Kraus, Uli Lemmer, Oliver Schmidt: „X-ray imaging with scintillator-sensitized hybrid organic photodetectors“; nature photonics, DOI: 10.1038/nphoton.2015.216

Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung richten die Forscher ihren Blick auf drei wesentliche Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig für industrielle und lebensnahe Anwendungen nutzen?

Dabei bestimmen vier Leitthemen die aktuellen Entwicklungen am INM: Neue Materialien für Energieanwendungen, Neue Konzepte für medizinische Oberflächen, Neue Oberflächenmaterialien für tribologische Systeme sowie Nano-Sicherheit und Nano-Bio. Die Forschung am INM gliedert sich in die drei Felder Nanokomposit-Technologie, Grenzflächenmaterialien und Biogrenzflächen.

Das INM - Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken ist ein internationales Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Leibniz-Gemeinschaft und beschäftigt rund 210 Mitarbeiter.

Weitere Informationen:

http://www.leibniz-inm.de
http://www.leibniz-gemeinschaft.de

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Plättchen statt Kügelchen machen Bildschirme sparsam
20.01.2020 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt
17.01.2020 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein ultraschnelles Mikroskop für die Quantenwelt

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für...

Im Focus: Integrierte Mikrochips für elektronische Haut

Forscher aus Dresden und Osaka präsentieren das erste vollintegrierte Bauelement aus Magnetsensoren und organischer Elektronik und schaffen eine wichtige Voraussetzung für die Entwicklung von elektronischer Haut.

Die menschliche Haut ist faszinierend und hat viele Funktionen. Eine davon ist der Tastsinn, bei dem vielfältige Informationen aus der Umgebung verarbeitet...

Im Focus: Dresdner Forscher entdecken Mechanismus bei aggressivem Krebs

Enzym blockiert Wächterfunktion gegen unkontrollierte Zellteilung

Wissenschaftler des Universitätsklinikums Carl Gustav Carus Dresden im Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) haben gemeinsam mit einem...

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Minutiöse Einblicke in das zelluläre Geschehen

24.01.2020 | Biowissenschaften Chemie

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungsnachrichten

Ein ultraschnelles Mikroskop für die Quantenwelt

24.01.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics