Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Keramische Partikel liefern digitale Röntgenplatten „aus der Sprühdose“

10.11.2015

Forscher vom INM in Saarbrücken haben Materialien untersucht, mit denen zukünftig Röntgendetektoren kostengünstig im großen Maßstab und mit hoher Bildauflösung hergestellt werden können.

Digitale Röntgensysteme sind aus der Gesundheitsversorgung nicht mehr wegzudenken. Der frühere Röntgenfilm wird darin durch einen sogenannten Röntgendetektor ersetzt. Heutige Detektoren sind teuer, empfindlich und in der Auflösung begrenzt.


Die elektronenmikroskopische Aufnahme zeigt die Verteilung der keramischen Partikel im Kunststoff in den gesprühten Röntgendetektoren.

Quelle: Copyright INM; frei in Zusammenhang mit dieser Meldung.

Nun ist es Wissenschaftlern im Kooperationsprojekt HOP-X gelungen, neue Materialien für Detektoren zu entwickeln: Sie betteten dazu Keramik-Partikel in einen leitfähigen Kunststoff ein. Die Bestandteile dieses „Komposit-Detektors“ lassen sich in Lösungsmittel einrühren und dann wie ein Lack durch Sprühen auftragen. Damit können zukünftig Röntgendetektoren kostengünstig im großen Maßstab und mit hoher Bildauflösung hergestellt werden.

Diese Ergebnisse wurden jüngst in der Zeitschrift Nature Photonics veröffentlicht.

Röntgendetektoren bestehen aus einer Szintillatorschicht und einer Photodiode. Die Szintillatorschicht wandelt Röntgenstrahlung in sichtbares Licht um, welches die Photodiode aufnimmt. Solche Detektoren sind schwer herzustellen und teuer. Ihre Auflösung ist begrenzt, weil sich die aufgefangenen Signale gegenseitig stören können.

Um Röntgendetektoren kostengünstiger herzustellen, beschritten Wissenschaftler der Siemens Healthcare GmbH, des INM –Leibniz-Institut für Neue Materialien, der Universitäten Erlangen und Hamburg und weiterer Partner im Projekt HOP-X einen neuen Weg: Sie verwendeten Materialien, die für flexible Solarzellen entwickelt wurden und passten sie auf Röntgenstrahlung an.

Die Wissenschaftler am INM stellten dazu keramische Partikel her, die im Röntgenlicht aufleuchten. Diese betteten sie in einen leitfähigen Kunststoff ein. Er wandelt das Licht in elektrischen Strom um, der vom Röntgengerät registriert wird. Die Forscher untersuchten außerdem die Strukturen, die aus Partikeln und Kunststoff gebildet werden.

„Wir untersuchten die Proben mit elektronenmikroskopischen Verfahren anhand dünner Schichten, die wir mit Ionenstrahlen aus dem Komposit schnitten“, sagt Tobias Kraus, Leiter des Programmbereichs Strukturbildung am INM.

„Mithilfe dieser Analytik konnten wir zeigen, wie sich die Partikel und der Kunststoff bei verschiedenen Mischverhältnissen anordnen. Dadurch war es unseren Projektpartnern möglich, die Mischverhältnisse für die empfindlichsten Röntgendetektoren abzuleiten.“ Dann seien scharfe Röntgenbilder auch bei geringer Strahlungsdosis möglich.

Die Ergebnisse zeigen, dass Röntgendetektoren aus diesen neuen Materialien die strengen Anforderungen der Medizintechnik erfüllen können. Derzeit arbeiten die Forscher an Prozesstechniken, um größere Detektoren herzustellen.

Hintergrund:
Neben dem INM waren am Projekt HOP-X die Siemens Healthcare GmbH, die Merck KgaA, sowie die CAN GmbH beteiligt. Das im Herbt 2015 beendete, dreijährige Verbundprojekt HOP-X wurde vom Bundesministerium für Bildung und Forschung mit 1,86 Millionen Euro unterstützt.

Originalpublikation:
Patric Büchele, Moses Richter, Sandro F. Tedde, Gebhard J. Matt, Genesis N. Ankah, Rene Fischer, Markus Biele, Wilhelm Metzger, Samuele Lilliu, Oier Bikondoa, J. Emyr Macdonald, Christoph J. Brabec, Tobias Kraus, Uli Lemmer, Oliver Schmidt: „X-ray imaging with scintillator-sensitized hybrid organic photodetectors“; nature photonics, DOI: 10.1038/nphoton.2015.216

Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung richten die Forscher ihren Blick auf drei wesentliche Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig für industrielle und lebensnahe Anwendungen nutzen?

Dabei bestimmen vier Leitthemen die aktuellen Entwicklungen am INM: Neue Materialien für Energieanwendungen, Neue Konzepte für medizinische Oberflächen, Neue Oberflächenmaterialien für tribologische Systeme sowie Nano-Sicherheit und Nano-Bio. Die Forschung am INM gliedert sich in die drei Felder Nanokomposit-Technologie, Grenzflächenmaterialien und Biogrenzflächen.

Das INM - Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken ist ein internationales Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Leibniz-Gemeinschaft und beschäftigt rund 210 Mitarbeiter.

Weitere Informationen:

http://www.leibniz-inm.de
http://www.leibniz-gemeinschaft.de

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung
13.07.2018 | Fachhochschule Südwestfalen

nachricht 3D-Druck: Stützstrukturen verhindern Schwingungen bei der Nachbearbeitung dünnwandiger Bauteile
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mister Raney bekommt Konkurrenz - Ein neuer Katalysator auf Nickel-Basis nutzt Nano-Strukturen

16.07.2018 | Biowissenschaften Chemie

Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

16.07.2018 | Physik Astronomie

Rostocker Forscher testen neue Generation von Offshore-Windenergie-Anlagen

16.07.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics