Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kalziumfluorid, ein wertvoller Rohstoff: Ein neues Synthese-Verfahren soll teure Importe ersetzen

16.04.2013
Ein vom Bundesministerium für Bildung und Forschung (BMBF) gefördertes Verbundprojekt unter der Leitung von Prof. Dr. Monika Willert-Porada (Universität Bayreuth) zielt darauf ab, aus fluorhaltigen Reststoffen kosten- und energieeffizient Kalziumfluorid herzustellen.

Am 17. und 18. April 2013 wird das Forschungsprojekt im Rahmen einer Kick-off-Veranstaltung im Helmholtz-Institut Freiberg für Ressourcentechnologie vorgestellt.


Aus preiswerten Mineralien wird hochwertiger Flussspat (grün): Das neue Verfahren ermöglicht die Herstellung von Sekundärrohstoffen aus fluorierten organischen Reststoffen. - Das Bild wurde im Rasterelektronenmikroskop aufgenommen. Durch einen speziellen Detektor können unterschiedliche Elemente gemessen und farblich unterschiedlich dargestellt werden. Bild: Lehrstuhl für Werkstoffverarbeitung, Universität Bayreuth

Kalziumfluorid wird heute weltweit für die industrielle Fertigung technologisch hochwertiger Produkte benötigt. Das in der Natur vorkommende Mineral – es wird Flussspat genannt – ist unentbehrlich für die Herstellung von Flusssäure, die in der Halbleiterindustrie und in der Erdölindustrie zum Einsatz kommt. Und auch Unternehmen, die Fluorpolymere herstellen, sind durch die Verarbeitung von Flusssäure indirekt auf Kalziumfluorid angewiesen.

Fluorpolymere sind Hochleistungskunststoffe, zu denen beispielsweise das PTFE (Polytetrafluorethylen) zählt – besser bekannt unter dem rechtlich geschützten Markennamen "Teflon".

Angesichts dieser Schlüsselfunktion für die Industrie ist es für europäische Unternehmen umso problematischer, dass Kalziumfluorid ein vergleichsweise schwer verfügbarer Rohstoff ist, der hauptsächlich außerhalb Europas im Bergbau gewonnen wird. Er kann nicht durch leichter verfügbare Rohstoffe ersetzt werden. Unternehmen in Deutschland und anderen Mitgliedsländern der EU sind daher auf Importe angewiesen. Die aber gestalten sich umso kostspieliger, je stärker die Nachfrage auf dem Weltmarkt ist.

Hier setzt ein materialwissenschaftliches Forschungs- und Entwicklungsvorhaben ein, das von Prof. Dr. Monika Willert-Porada am Lehrstuhl für Werkstoffverarbeitung an der Universität Bayreuth geleitet wird. Kooperationspartner sind die Dyneon GmbH, die Fluorchemie Stulln GmbH und das Forschungsinstitut InVerTec, ein An-Institut der Universität Bayreuth. Gemeinsam wollen die Projektpartner ein flexibel einsetzbares und leistungsstarkes Synthese-Verfahren entwickeln, das in der Lage sein soll, Reststoffe aus der Industrieproduktion kosten- und energieeffizient zu Kalziumfluorid weiterzuverarbeiten. Wird dieses anspruchsvolle Projektziel erreicht und industriell umgesetzt, steht Flussspat eines Tages in großen Mengen als Sekundärrohstoff zur Verfügung.

Das Bundesministerium für Bildung und Forschung (BMBF) unterstützt das Verbundvorhaben drei Jahre lang im Rahmen der Fördermaßnahme "r³ Innovative Technologien für Ressourceneffizienz – Strategische Metalle und Mineralien". Die Fördersumme beläuft sich insgesamt auf knapp 340.000 Euro.
Am 17. und 18. April 2013 werden die Bayreuther Projektverantwortlichen an einer Kick-off-Veranstaltung für r³-Projekte teilnehmen und in diesem Rahmen auch die bereits 2012 angelaufenen Forschungsarbeiten zum Flussspat vorstellen. Gastgeber der Veranstaltung ist das Helmholtz-Institut Freiberg für Ressourcentechnologie. Das 2011 gegründete Institut will durch die Entwicklung innovativer Technologien dazu beitragen, dass mineralische und metallhaltige Rohstoffe effizienter bereitgestellt und genutzt werden können.

Dr. Thorsten Gerdes, der die Zusammenarbeit der Projektpartner von Bayreuth aus koordiniert, ist angesichts der bisherigen Projektfortschritte optimistisch: "Das Verfahren, das wir derzeit entwickeln, besteht im Wesentlichen aus zwei Abschnitten: In einer ersten Stufe werden fluorhaltige, organische Polymere und niedermolekulare Reststoffe, wie sie in der Industrieproduktion anfallen, in Kohlendioxid, Fluorwasserstoff und Wasser zerlegt. Aus der entstehenden Flusssäure oder dem Fluorwasserstoff synthetisieren wir in einer zweiten Stufe Flussspat. Bereits jetzt zeigt sich, dass wir synthetischen Flussspat mit hoher Qualität herstellen können."
Ansprechpartner für weitere Informationen:

Prof. Dr. Monika Willert-Porada
Lehrstuhl für Werkstoffverarbeitung
Universität Bayreuth
95440-Bayreuth
Telefon: +49 (0)921 / 55-7200, -7201, -7202
E-Mail: monika.willert-porada@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Charakterisierung von thermischen Schnittstellen für modulare Satelliten
19.02.2020 | Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung

nachricht Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen
17.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics