Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf der Jagd nach den Elektronenlöchern: Molekularer Blick auf die solare Wasserspaltung

30.10.2012
Wasserstoff aus Sonnenlicht ist seit langem der Heilige Gral der nachhaltigen Energieversorgung.

Eisenoxid ist ein viel versprechendes Elektrodenmaterial für die photoelektrochemische Wasserspaltung – nicht zuletzt, weil es billig, stabil, umweltfreundlich und in grossen Mengen verfügbar ist.


Hämatit
(Bildquelle: iStock)

Einem internationalen Forscherteam unter Leitung der Empa ist es nun gelungen, die molekularen Strukturänderungen einer Eisenoxidelektrode während der Wasserspaltung zu beobachten. Damit eröffnet sich die Möglichkeit zur günstigen Wasserstoffproduktion aus Sonnenenergie.

Hämatit, die mineralische Form von Eisenoxid (oder, banal gesagt, Rost), ist ein viel versprechendes Anodenmaterial für photoelektrochemische Zellen (PEC), weil sich mit ihm Sonnenlicht in einem breiten Spektralbereich einfangen lässt. Obwohl Hämatit theoretisch bis zu 15 Prozent der Sonnenenergie in Wasserstoff umwandeln könnte, ist die tatsächliche Effizienz deutlich geringer als die anderer Metalloxide. Das liegt an der molekularen Struktur des Hämatits, bei der Elektronenlöcher im angeregten Zustand nur für extrem kurze Zeit existieren.

Hilfreiche Löcher im Hämatit

Elektronen sind (negative) Ladungsträger, sie spielen diese Rolle allerdings nicht alleine. Wenn ein Elektron seinen Platz in der Kristallstruktur eines Halbleiters verlässt, hinterlässt es ein Loch, das sich quasi wie ein positiver Ladungsträger verhalten kann – vorausgesetzt, Elektron und Loch bleiben voneinander getrennt und verbinden sich nicht erneut. In der modernen Halbleiterelektronik sind Löcher wichtige Ladungsträger, ebenso wie in Batterien, Kondensatoren, Brennstoffzellen, Solarzellen und PEC. Sonnenlicht erzeugt in PEC-Elektroden permanent Paare aus Elektronen und Löchern, die an die Oberfläche diffundieren, dort Wasser spalten und Wasserstoff und Sauerstoff erzeugen. Aufgrund der molekularen Struktur von Hämatit geht jedoch ein grosser Teil der Paare verloren, bevor er an der Oberfläche Wasser spalten kann.

Daher ist es wichtig, genauere Kenntnisse über den Zustand der Elektronenlöcher an der Oberfläche des Hämatits zu gewinnen. Bereits früher wurde vermutet, dass Hämatit zwei verschiedene Arten von Löchern mit unterschiedlichem Potenzial für Wasserspaltung bildet. Die Existenz der verschiedenen Typen von Löchern mit unterschiedlicher Reaktivität für Wasseroxidation hat weit reichende Auswirkungen auf die photoelektrische Leistungsfähigkeit von Hämatit. Allerdings ist es schwierig, diese Löcher zu detektieren, unter anderem, weil sie extrem kurzlebig sind.

Nicht alle Löcher sind gleich

In ihrer jüngst im «Journal of Physical Chemistry C» veröffentlichten Studie untersuchten die Empa-Wissenschaftler Artur Braun und Debajeet Bora sowie ihre Kollegen von der EPF Lausanne, der Universität Basel, aus China und den Vereinigten Staaten die photoelektrisch generierten Löcher in einer speziell konstruierten photoelektrochemischen Zelle während des Betriebs. Die Forscher zeichneten Absorptionsspektren von weichem Röntgenlicht auf, während die Zelle unter simuliertem Sonnenlicht oder im Dunkeln in Betrieb war und identifizierten zwei neue Spektralsignaturen, die von zwei unterschiedlichen Lochübergängen stammen.

Laut Braun ist dies das erste Mal, dass die Elektronenstruktur einer PEC-Photoanode während einer Wasserspaltung analysiert wurde. «Die Vorbereitung für dieses äusserst komplizierte Experiment hat drei Jahre in Anspruch genommen», sagt Braun. «Schliesslich funktioniert Röntgenspektroskopie nur im Ultrahochvakuum – Photoelektrochemie hingegen funktioniert nur in Flüssigkeiten. Eine Kombination von beidem war allein aus technischer Sicht eine grosse Leistung. Dennoch würde ich sagen, dass wir grosses Glück hatten, die beiden Elektronenlöcher in einer funktionierenden PEC zu entdecken.»

Das bahnbrechende Experiment des Teams bewies die Bildung zweier verschiedener Typen von Elektronenlöchern an der Berührungsfläche von Halbleiter und Flüssigkeit – unter genau den Bedingungen, unter denen der Photostrom entsteht. Die quantitative Analyse der Spektralsignatur zeigte, dass beide Typen, im Unterschied zu früheren Spekulationen, zu dem entstehenden Photostrom beitragen. «Das ist ein Meilenstein beim Verständnis der solaren Wasserspaltung und eine ermutigende Neuigkeit für Wissenschaftler weltweit, die daran arbeiten, Hämatit für PEC-Photoanoden zu optimieren», sagt Braun.

Literaturhinweis
A Braun, K Sivula, DK Bora, J Zhu, L Zhang, M Grätzel, J Guo, EC Constable; Direct Observation of Two Electron Holes in a Hematite Photo-Anode during Photoelectrochemical Water Splitting; J Phys Chem C 116, 16870 (2012)
Weitere Informationen
Dr. Artur Braun, Hochleistungskeramik, Tel. +41 58 765 48 50, artur.braun@empa.ch

Sabine Voser | EMPA
Weitere Informationen:
http://www.empa.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Charakterisierung von thermischen Schnittstellen für modulare Satelliten
19.02.2020 | Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung

nachricht Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen
17.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics