Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

INM stellt neue Methoden für strukturierte Nanokomposite bereit

24.07.2015

Hochempfindliche Diagnostik in der Medizintechnik, leuchtende Polymere, biegsame Dünnschicht-Solarzellen, flexible Displays oder druckbare Elektronik – sie alle basieren auf funktionellen Kompositen. Diese Materialien müssen geeignete Strukturen auf der Nanometer-Ebene enthalten, um ihre Funktion optimal zu erfüllen.

An der Synthese und Analyse definiert strukturierter Komposite arbeitet das INM – Leibniz-Institut für Neue Materialien. Seine Kompetenz hat es bereits in mehreren vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Kooperationen mit Industriepartnern unter Beweis gestellt. Es stellt seine Kompetenz nun verstärkt Partnern aus der Industrie zur Verfügung.


Kontrollierte Selbst-Anordnung von Nanopartikeln in Kompositen für verbesserte Materialeigenschaften. Hier: hierarchische Partikelanordnung im Emulsionsverfahren.

Quelle: Copyright INM; frei in Zusammenhang mit dieser Meldung.

Die neuen Herstellungsmethoden und die Analyse-Kompetenz am INM erlauben es den Wissenschaftlern, Nanopartikel in Beschichtungen, an Grenzflächen und auf Oberflächen kontrolliert nach Bedarf anzuordnen.

So ist es beispielsweise möglich, durch Selbstanordnung und Template die Lage jedes einzelnen Nanopartikels exakt festzulegen, Nanopartikel an Grenzflächen kontrolliert anzuhäufen, anisotrope Partikel in Vorzugsrichtungen aufzureihen und Partikel-Cluster oder Partikel-Netzwerke in Kompositen zu erzeugen. In druckbaren Tinten können die Entwickler die chemische Zusammensetzung der Nanopartikel, Partikel-Geometrie, Agglomeration, Viskosität, Oberflächenspannung und Benetzungsvermögen je nach Bedarf passgenau einstellen.

„Wir stellen über chemische Synthesen metallische, oxidische oder Halbleiter-Nanopartikel her und betten sie in Polymere ein“, sagt Tobias Kraus, Leiter des Programmbereichs Strukturbildung. „Dabei kontrollieren und beobachten wir sehr genau, wie sich die Partikel im Material verteilen. Mit maßgeschneiderten Nassbeschichtungs- und Druckverfahren und Methoden der Selbstanordnung können diese funktionellen Komposite dann im Labormaßstab als dünne Filme oder Volumenkörper gefertigt und in Bauteile integriert werden.“

Neben den Synthese- und Verfahrensmöglichkeiten verfügt das INM außerdem über einen umfangreichen Analyse-Park. Er ermöglicht es, die Materialstrukturen zu untersuchen und zu verstehen: Proben werden mit Ultramikrotomie, fokussierten Ionenstrahlen und Ionenmühlen vorbereitet und mit vielfältigen elektronenmikroskopischen Methoden am INM untersucht.

„Auch im Bereich der Streumethoden und Elementaranalytik sind wir sehr gut aufgestellt,“ ergänzt Kraus: Mit Röntgenstreuung in verschiedenen Winkelbereichen kombiniert mit optischer und Massen-Spektroskopie könne man statistisch aussagekräftige Angaben über Materialzusammensetzungen machen.

Häufig müssten für Industrieanwendungen funktionelle und strukturelle Aspekte gleichermaßen berücksichtigt werden. „Wir wissen um diese hohen Anforderungen. Mit der Vielfalt an Prozessen, Ausgangsmaterialien und Analyse-Instrumenten können wir am InnovationsZentrum INM auf die individuellen Wünsche der Industrie antworten“, führt Kraus aus, „in Kooperationen entwickeln wir dann hochwertige Funktionsschichten für sehr unterschiedliche Anwendungen.“ Sogar selbstheilende Materialien seien in Zukunft möglich.

Ihr Experte:
Dr. Tobias Kraus
INM – Leibniz-Institut für Neue Materialien
Leiter Strukturbildung
Stellvertretender Leiter InnovationsZentrum INM
Tel: 0681-9300-389
tobias.kraus@leibniz-inm.de

Weiterführende Publikationen:
Maurer, Johannes H. M., González-García, Lola, Reiser, Beate, Kanelidis, Ioannis, Kraus, Tobias; “Sintering of ultrathin gold nanowires for transparent electronics”, ACS Applied Materials & Interfaces 7 (2015) 15, 7838-7842
Maurer, Johannes H. M., Kraus, Tobias; „Solarzelle von der Rolle - Nanokomposit-Dünnschichten für die flexible, transparente Elektronik der Zukunft“, Chemie & more : Prozesstechnik 2014 (2014) 05, 32-34
Born, Philip, Schön, Volker, Blum, Susanne, Gerstner, Dominik, Huber, Patrick, Kraus, Tobias, „Self-assembly of gold nanoparticles at the oil-vapor interface: from mono- to multilayers”, Langmuir 30 (2014) 44, 13176-13181

Hintergrund zum InnovationsZentrum INM:
Das InnovationsZentrum INM gibt Unternehmen Zugang zu den Ergebnissen, Kompetenzen und Möglichkeiten der Entwicklungsarbeit des INM. Das INM erforscht maßgeschneiderte mikro- und nanostrukturierte Materialien und Oberflächen, zum Beispiel für verbesserte Energieeffizienz, gedruckte Elektronik, medizinische Oberflächen, Anwendungen in der Optik und Anwendungen in der Öl- und Konsumgüterindustrie. Das InnovationsZentrum INM passt diese Technologieplattformen den Anforderungen der Industrie an. Es besitzt Personal, Räume und Ausstattung zur Maßstabsvergrößerung, Prozess- und Anlagenentwicklung und Qualitätssicherung. Im Technikum des InnovationsZentrums entwickeln und skalieren die Entwickler Materialien und Prozesse und begleiten die Kooperationspartner von der Labor- in die Pilotphase. Das InnovationsZentrum bietet chemische Prozesstechnik, Polymerverarbeitung, Partikelsynthese, Strukturierungs-, Beschichtungs- und andere Produktionsverfahren. So entstehen neue Materialien für die Industrie, die Prozesskosten verringern und die Produktqualität erhöhen.

Hintergrund zu laufenden Projekten:
HOP-X:
Digitale Bildplatten für medizinisches Röntgen basieren auf Keramiken. Im vom BMBF geförderten Projekt HOP-X (Hybrid organische Photodetektoren für die Radiographie) werden Röntgenbildplatten entwickelt, die auf einem neuen Material aus leitfähigen Polymeren und anorganischen Partikeln bestehen. Die Partikel absorbieren und wandeln Röntgenphotonen um; die leitfähigen Polymere transportieren die entstehende Ladung zu Elektroden. Der Programmbereich Strukturbildung des INM beschäftigt sich im Projekt hauptsächlich mit der Analyse der Kompositstrukturen aus Partikeln und Polymeren, der Entstehung der Struktur bei der Herstellung, und ihren Effekten auf die Leistungsfähigkeit der Bildplatten. Partner des Projektes sind die Siemens, Erlangen, die Merck KGaA, Darmstadt sowie die CAN GmbH, Hamburg. Weitere Informationen unter http://www.vditz.de/meldung/organische-detektoren-fuer-roentgenstrahlung

NanoSpekt:
In diesem Projekt beschäftigt sich das INM mit optisch transparenten Materialien für die Elektronik der Zukunft. Das BMBF-geförderte Projekt im Rahmen des NanoMatFutur-Programmes verwendet Nanopartikel mit definierten Formen und Anordnungen in Polymeren, um transparente Elektroden beispielsweise für berührungsempfindliche Bildschirme und Solarzellen zu fertigen. Die Förderinititative „NanoMatFutur“ ist Teil des Rahmenprogramms „Werkstoffinnovationen für Industrie und Gesellschaft“. WING fasst klassische Materialforschung mit der Forschung zu chemischen Technologien und der werkstoffspezifischen Nanotechnologie zusammen. Es ist Teil der Hightech Strategie der Bundesregierung. Weitere Informationen unter http://www.bmbf.de/de/3780.php

Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung richten die Forscher ihren Blick auf drei wesentliche Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig für industrielle und lebensnahe Anwendungen nutzen? Dabei bestimmen vier Leitthemen die aktuellen Entwicklungen am INM: Neue Materialien für Energieanwendungen, Neue Konzepte für medizinische Oberflächen, Neue Oberflächenmaterialien für tribologische Systeme sowie Nano-Sicherheit und Nano-Bio. Die Forschung am INM gliedert sich in die drei Felder Nanokomposit-Technologie, Grenzflächenmaterialien und Biogrenzflächen.

Das INM - Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken ist ein internationales Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Leibniz-Gemeinschaft und beschäftigt rund 210 Mitarbeiter.

Weitere Informationen:

http://www.leibniz-inm.de

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neues Material mit magnetischem Formgedächtnis
04.06.2019 | Paul Scherrer Institut (PSI)

nachricht Weltraumschrott verringern: HZG-Wissenschaftler helfen beim Sauberhalten
30.05.2019 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics