Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In Echtzeit dem Erstarren von Metallen zuschauen

05.03.2019

Materialwissenschaftler wollen mit Hilfe der 3D-Röntgentomoskopie das dendritische Wachstum besser verstehen und dafür die Geschwindigkeit zur Aufnahme von Röntgentomogrammen auf das Zwanzigfache erhöhen

Wenn man Metall dabei zuschaut, wie es erstarrt, sieht es so aus, als ob lauter kleine Bäume wachsen. Diese Strukturen werden Dendriten genannt, abgeleitet aus dem griechischen Wort déndron für Baum. Deshalb spricht die Wissenschaft auch von dendritischem Wachstum. Dieser Prozess des Erstarrens ist hochkomplex und teilweise noch unverstanden.


Wer zuschauen will benötigt allerdings Röntgenstrahlen, denn nur diese durchdringen Metall. Für die Entschlüsselung des Erstarrungsprozesses steht mit der 3D-Röntgentomoskopie jetzt eine geeignete Methode zur Verfügung, denn das Dendritenwachstum ist ein dreidimensionaler Vorgang und er verläuft rasend schnell.

Die 3D-Röntgentomoskopie ist extrem schnell. 50 Tomogramme pro Sekunde können die Mitarbeiter*innen von Prof. Dr. John Banhart im Moment aufnehmen. Das ist Weltrekord. „Aber für das Dendritenwachstum ist es noch nicht schnell genug“, sagt der Leiter des TU-Fachgebietes Struktur und Eigenschaften von Materialien.

„Wir wollen 1000 Tomogramme pro Sekunde schaffen und damit erstmals die Tomoskopie auch auf den Erstarrungsprozess von Metallen anwenden, um ihn besser zu verstehen.“ Den Begriff der Tomoskopie hat Banharts Team erst vor Kurzem geprägt. Die Wissenschaftler wollen damit die enorme Schnelligkeit ausdrücken, die sie mittlerweile erreichen, und sich von der langsameren Vorstufe – der 3D-Tomografie – auch sprachlich absetzen.

Die Deutsche Forschungsgemeinschaft (DFG) stufte diese Forschungen als „besonders innovativ“ ein und bewilligte ein „Reinhart-Koselleck-Projekt“. Mit dieser DFG-Förderlinie erhalten durch ihre wissenschaftliche Leistung ausgewiesene Forscher*innen die Möglichkeit, sich risikobehafteten Vorhaben widmen zu können. Finanziert wird das Reinhart-Koselleck-Projekt von Prof. Dr. John Banhart von der DFG über fünf Jahre mit insgesamt 750.000 Euro.

Bei der 3D-Tomoskopie werden dreidimensionale Röntgentomogramme in Bruchteilen von Sekunden aufgenommen und zu einem 3D-Film verarbeitet. Mit der Anwendung der 3D-Röntgentomoskopie auf die Untersuchung von Metallschäumen haben John Banhart und seine Arbeitsgruppe bereits einschlägige Erfahrungen. Angewendet wird dieses Material zum Beispiel für Dämpfungselemente im Maschinenbau und im Leichtbau. Auch gibt es erste Ansätze, Motoren in Elektrofahrzeugen in Metallschaum zu verpacken, um sie vor eindringenden Gegenständen zu schützen, die einen Kurzschluss und damit eine Explosion auslösen könnten.

Wie fast jeder Schaum hat auch Metallschaum die Tendenz, nicht beständig zu sein. Der schöne Bierschaum verschwindet schneller, als einem lieb ist, und in der Badewanne kann man dem Platzen der Schaumblasen buchstäblich zusehen. Träume sind Schäume heißt es deshalb auch im Volksmund. Diese Unbeständigkeit von Schaum macht auch Materialwissenschaftlern wie Prof. Dr. John Banhart zu schaffen.

„Metallschäume werden aus einem Metallpulver und einem Treibmittel hergestellt. Das Treibmittel ist ebenfalls ein Pulver aus Metall und Wasserstoff. Beides wird miteinander vermischt, verdichtet und erhitzt und dabei setzt das Treibmittel Wasserstoff frei, wodurch das Gemisch aufgeschäumt wird. Während des Erstarrungsprozesses platzen die Blasen und wachsen zu größeren zusammen. Das ist ein unerwünschter Prozess, weil sich dadurch die mechanischen Eigenschaften des Materials verschlechtern“, erklärt John Banhart.

Mit Hilfe der 3D-Tomoskopie ist es seiner Gruppe gelungen zu beschreiben, warum die Blasen platzen: Die Ursache sind lokale Druckerhöhungen um die Treibmittelteilchen herum. „Deshalb forschen wir daran, ein neues Treibmittel zu finden, das sich in dem Metall gleichmäßiger verteilt und den Schaum sanfter erzeugt“, so Banhart.

Eine weitere Anwendung der Tomoskopie sind Prozesse, bei denen mittels eines Laserstrahls Metall in sehr kurzer Zeit geschmolzen wird. Dies kann das Laserstrahlschweißen und -schneiden sein, aber auch die additive Fertigung, auch als 3D Druck bekannt, wo Material schichtweise zu einem Bauteil aufgetragen wird. Hier will John Banharts Arbeitsgruppe die 3D-Röntgentomoskopie dazu nutzen herauszufinden, was in der kurzen Zeit des Aufschmelzens und Wiedererstarrens passiert.

Ein zweiter Schwerpunkt wird sein, die gewaltigen Datenmengen, die anfallen werden – mehrere Terabyte pro Minute –, mathematisch so zu verarbeiten, dass sie auch zu einem Erkenntnisgewinn führen. „Da stehen wir vor einer enormen Herausforderung“, sagt John Banhart. Der dritte Schwerpunkt der Forschungen ist die Entwicklung funktionaler und transportabler experimenteller Aufbauten, mit denen die Aufnahmen am Synchrotron des Paul-Scherer-Instituts in der Schweiz gemacht werden können. John Banhart: „Wir benötigen intensives Röntgenlicht, und das wird uns nur von Synchrotrons bereitgestellt.“

Film- und Fotomaterial zum Download:
http://www.tu-berlin.de/?id=203659

Weitere Informationen erteilt Ihnen gern:
Prof. Dr. John Banhart
TU Berlin
Fachgebiet Struktur und Eigenschaften von Materialien
Tel.: 030/314-29224
E-Mail: john.banhart@tu-berlin.de

Stefanie Terp | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-berlin.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Charakterisierung von thermischen Schnittstellen für modulare Satelliten
19.02.2020 | Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung

nachricht Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen
17.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

Forscher der Universität Bayreuth haben ein ungewöhnliches Material entdeckt: Bei einer Abkühlung auf zwei Grad Celsius ändern sich seine Kristallstruktur und seine elektronischen Eigenschaften abrupt und signifikant. In diesem neuen Zustand lassen sich die Abstände zwischen Eisenatomen mithilfe von Lichtstrahlen gezielt verändern. Daraus ergeben sich hochinteressante Anwendungsmöglichkeiten im Bereich der Informationstechnologien. In der Zeitschrift „Angewandte Chemie – International Edition“ stellen die Wissenschaftler ihre Entdeckung vor. Die neuen Erkenntnisse sind aus einer engen Zusammenarbeit mit Partnereinrichtungen in Augsburg, Dresden, Hamburg und Moskau hervorgegangen.

Bei dem ungewöhnlichen Material handelt es sich um ein Eisenoxid mit der Zusammensetzung Fe₅O₆. In einem Hochdrucklabor des Bayerischen Geoinstituts (BGI),...

Im Focus: Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

Studie von Mainzer Physikern zeigt: Experimente der nächsten Generation versprechen Antworten auf eine der aktuellsten Fragen der Neutrinophysik

Eine der spannendsten Herausforderungen der modernen Physik ist die Ordnung oder Hierarchie der Neutrinomassen. Eine aktuelle Studie, an der Physiker des...

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Krankheiten ohne Medikamente heilen

Fraunhofer-Forschende wollen mit Mikroimplantaten Nervenzellen gezielt elektrisch stimulieren und damit chronische Leiden wie Asthma, Diabetes oder Parkinson behandeln. Was diese Therapieform so besonders macht und welche Herausforderungen die Forscher noch lösen müssen.

Laut einer Studie des Robert-Koch-Instituts ist jede vierte Frau von Harninkontinenz betroffen. Diese Form der Blasenschwäche wurde bislang durch ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Automatisierung im Dienst des Menschen

25.02.2020 | Veranstaltungen

Genomforschung für den Artenschutz - Internationale Fachtagung in Frankfurt

25.02.2020 | Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Plasmonen im atomaren Flachland

25.02.2020 | Informationstechnologie

Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

25.02.2020 | Informationstechnologie

Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

25.02.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics