Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hybridauto-Karosserie wird zur Batterie

09.02.2010
Neues Material soll Akkus bei Elektronik überflüssig machen

Europäische Forscher arbeiten an einem Material, das Strom speichern kann und gleichzeitig stabil und leichtgewichtig genug für den Autobau ist. „Wir sind vom Potenzial dieser Technologie begeistert. Wir glauben, dass das Auto der Zukunft dank unserem Kompositmaterial Strom aus seinem Dach, seiner Motorhaube oder sogar aus der Tür beziehen kann“, sagt Emile Greenhalgh vom Department of Aeronautics des Imperial College London (ICL).

Greenhalgh koordiniert ein Dreijahres-Projekt, das nicht nur die Speicherkapazität des aus Karbonfasern und einem Polymerharz bestehenden Materials verbessert soll. "Wir erwarten, dass es in einem Fahrzeugprototypen vo Volvo genutzt wird", meint Greenhalgh gegenüber pressetext. Dort soll eine Strom speichernde Reserveradmulde zum Einsatz kommen. Langfristig orten die ICL-Forscher das Potenzial, Akkus nicht nur bei Autos, sondern bei diversen Elektronik-Gadgets überflüssig zu machen.

Vielseitige Anwendungsmöglichkeiten

Was mögliche Anwendungen des Materials betrifft, sehen die Forscher kaum Grenzen. So seien Navigationssysteme denkbar, deren Gehäuse die erforderliche Energie speichert. „Man könnte ein Handy haben, das so dünn ist wie eine Kreditkarte, weil es keine voluminöse Batterie mehr braucht“, meint Greenhalgh. Auch Laptops, die dank ihrem Gehäuse länger laufen, wären denkbar. Allerdings stehe das Projekt noch am Anfang und der Weg zu solchen Anwendungen sei noch weit.

Karosserieteile als Stromspeicher soll dabei einen Meilenstein bilden. Wenn die geplante Reserveradmulde von Projektpartner Volvo in ein Fahrzeug verbaut werden kann, würde das die erforderliche Menge an Akkus für den Elektromotor deutlich senken. Den Forschern zufolge könnte dadurch das Gesamtgewicht des Fahrzeugs um 15 Prozent sinken. Das wiederum würde für den Elektrobetrieb die Reichweite zukünftiger Fahrzeuge deutlich steigern.

Schnell laden ohne Kapazitätsverlust

Im Gegensatz zu herkömmlichen Batterien kommt es beim Karbonfaser-Polymerharz-Material nicht zu einer chemischen Reaktion. Dadurch kann es den Forschern zufolge nicht nur schneller aufgeladen werden. Die mit der Zeit auftretenden Kapazitätsverluste, wie sie von den gängigen Lithium-Ionen-Akkus bekannt sind, werden dadurch ebenfalls vermieden. Weiters werde das Material große Strommengen auch schneller abgeben als aktuelle Akkus.

Im Rahmen des 3,9-Mio.-Euro-Projekts wollen die Forscher zunächst die mechanischen Eigenschaften des Materials verbessern, indem sie Kohlenstoff-Nanoröhren auf den Karbonfasern ziehen. Damit sollte auch die Kapazität steigen. "Wir erwarten, dass letztendlich ein Hybridmaterial entstehen wird, mit dem Speichermaterial im Inneren und konventionellen Materialien und Beschichtungen außen", so ferner Greehalgh. Gepaart mit geringen Spannungen von unter zehn Volt soll das eine gefahrlose Nutzung erlauben.

Nach Greenhalghs Schätzung wird es nach Ende des aktuellen Projekts, an dem unter anderem auch die Bundesanstalt für Materialforschung und –prüfung http://www.bma.de beteiligt ist, noch drei bis fünf Jahre dauern, ehe die Technologie marktreif ist.

Thomas Pichler | pressetext.deutschland
Weitere Informationen:
http://www.imperial.ac.uk

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forschung zur Knochenregeneration wird ausgebaut
08.10.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht TU Bergakademie Freiberg entwickelt einzigartigen Werkstoff aus marinem Badeschwammskelett
07.10.2019 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics