Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hart oder weich – beides zugleich: Neues Nanomaterial wechselt Eigenschaft nach Bedarf

03.06.2011
Das hat die Welt noch nicht gesehen: Ein Werkstoff, der quasi auf Knopfdruck seine Festigkeit ändert.

Dieser Wandel in Sekundenschnelle kann durch Änderungen der Elektronenstruktur eines Materials erreicht und so zum Beispiel aus einem festen und spröden Stoff ein weicher und formbarer werden. Den entscheidenden Impuls liefern elektrische Signale, Clou dieser sensationellen Entwicklung. Die Weltneuheit kommt aus Hamburg: Der Werkstoffwissenschaftler Jörg Weißmüller von der TU Hamburg, in Personalunion Wissenschaftler am Helmholtz-Zentrum Geesthacht, hat gemeinsam mit Kollegen des Metallforschungsinstituts in Shenyang, China an dieser bahnbrechenden Entwicklung geforscht.

„Das ist ein Durchbruch in den Materialwissenschaften“, sagte der 51-jährige Saarländer über seine grundlegende Forschung, die die Tür zu den vielfältigsten Anwendungen öffnet. In der aktuellen Ausgabe der renommierten Fachzeitschrift “Science" (DOI: 10.1126/science.1202190 ) beschreiben Prof. Dr. Jörg Weißmüller und der chinesische Forscher Hai-Jun Jin das neue metallische Hochleistungsmaterial. Die Erkenntnisse könnten in Zukunft intelligente Materialien möglich machen, die zum Beispiel Risse im Blech selbstständig verschließen.

Beim Eierkochen kann man frei entscheiden – je nach Kochzeit wird das Ei hart oder es bleibt weich. Einige Entscheidungen sind jedoch unwiderruflich – ein hartes Ei wird nie wieder weich. Weniger Ärger am Frühstückstisch gäbe es, wenn man einfach zwischen den verschiedenen Eigenschaften des Eies hin- und herschalten könnte. Genau wie beim Eierkochen wird in der Herstellung metallischer Konstruktionswerkstoffe das Eigenschaftsprofil ein für allemal festgelegt. Deshalb müssen Ingenieure bei den mechanischen Eigenschaften eines Materials Kompromisse eingehen: So geht beispielsweise mit einer hohen Festigkeit zwangsläufig auch eine erhöhte Sprödigkeit und damit eine verringerte Schadenstoleranz einher. „An dieser Stelle zeichnet sich nun ein erheblicher Fortschritt ab“, sagt Weißmüller, Leiter des Instituts für Werkstoffphysik und Werkstofftechnologie an der TU Hamburg und der Abteilung Hybride Materialsysteme am Helmholtz-Zentrum Geesthacht. „Wir haben zum ersten Mal ein Material erzeugt, das beim Gebrauch zwischen den mechanischen Eigenschaften fest und spröde sowie weich und formbar hin- und herschalten kann. Noch stecken wir mitten in der Grundlagenforschung, doch unsere Entdeckung wird die Entwicklung so genannter smart materials, also intelligenter Materialien, voranbringen.“

Hochzeit von Metall und Wasser
Zur Herstellung dieses zukunftweisenden Materials benutzt der Werkstoffwissenschaftler einen vergleichsweise einfachen Vorgang: die Korrosion. Die Metalle, in der Regel Edelmetalle wie Gold oder Platin, werden in eine säurehaltige Lösung gegeben. In Folge des einsetzenden Korrosionsprozesses bilden sich winzigste Gänge und Löcher im Metall. So bildet sich ein nanostrukturiertes Material mit einem Netzwerk von Porenkanälen. In diesen Poren wird eine leitfähige Flüssigkeit eingebracht, zum Beispiel eine Kochsalzlösung oder eine verdünne Säure. Dadurch entsteht ein echtes Hybridmaterial aus Metall und Flüssigkeit. Erst diese ungewöhnliche „Hochzeit“, wie Weißmüller die Verbindung aus Metall und Wasser nennt, macht den durch ein elektrisches Signal ausgelösten Wechsel der Materialeigenschaften auf Knopfdruck möglich.

Da in der Flüssigkeit Ionen gelöst sind, können die Grenzflächen des Metalls elektrisch aufgeladen werden. Anders ausgedrückt: Die mechanischen Eigenschaften des metallischen Partners werden durch Anlegen einer elektrischen Spannung im flüssigen Partner verändert. Dahinter steht eine Modifikation, eine Stärkung oder Schwächung der atomaren Bindungen in der Oberfläche des Metalls als Folge des Einbaus zusätzlicher Elektronen. Bei Bedarf läßt sich so die Festigkeit des Materials verdoppeln oder aber ein weniger fester, dafür aber plastisch formbarer Zustand einstellen.

Noch liegen konkrete Anwendungen in der Zukunft. Die Forscher denken jedoch bereits weiter: Prinzipiell kann das Material elektrische Signale selbstständig erzeugen, und so gezielt in Bereichen mit hoher Belastung eine lokale Verfestigung einstellen. Damit ließen sich Schädigungen durch Risse verhindern oder gar ausheilen. Damit sind die Wissenschaftler dem Ziel ‚intelligenter’ Hochleistungsmaterialien ein großes Stück näher gekommen.

Die Original-Veröffentlichung:
A material with electrically tunable strength and flow stress (DOI: 10.1126/science.1202190)

Jutta Katharina Werner | idw
Weitere Informationen:
http://www.tu-harburg.de/wp/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund
22.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Nah dran an der Fiktion: Die Außenhaut für das Raumschiff „Enterprise“?
22.06.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics