Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gummi auf Eis – ein Kontakt mit vielen Unbekannten

06.04.2016

Auch wenn für dieses Jahr die Zeit der Winterreifen vorbei ist, Wissenschaftler und Reifenhersteller arbeiten ständig daran, den idealen Reifen auch für extreme Bedingungen zu entwickeln. Eine neue Studie der Technischen Universität Wien hat das Reibungsverhalten von Gummi auf Eisflächen getestet. Ihre Ergebnisse haben die Forscher mit den Prognosen der Kontaktmechanik-Theorie des Jülicher Wissenschaftlers Bo Persson verglichen – und festgestellt, dass sein Modell ihre Daten nahezu perfekt voraussagte.

Gummi ist ein kompliziertes Material. „Es ist nicht elastisch, sondern viskoelastisch“, erklärt Bo Persson. Viskoelastische Materialien vereinigen Merkmale von Flüssigkeiten und Festkörpern. Dies zeigt sich insbesondere in der Art, in der sie auf Druckeinwirkung reagieren.


Bo Persson beschäftigt sich seit beinahe zwanzig Jahren damit wie Gummi mit anderen Materialien interagiert, und hat eine umfängliche Theorie der zugrundeliegenden Kontaktmechanik entwickelt.

Copyright: Forschungszentrum Jülich

Gummi besteht aus langen, untereinander vernetzten Molekülketten. Bei äußerer Belastung entflechten und strecken sich diese, und kehren dann wieder in ihre Ausgangsform zurück. „Gummi hat gewissermaßen eine interne Dämpfung. Durch eine Art Reibung zwischen den Molekülen wird die Energie in dem Material verteilt.“ Wie Gummi auf Belastungen reagiert, ist zeit- und temperaturabhängig. Bei schneller Krafteinwirkung oder bei sehr niedrigen Temperaturen wird Gummi hart, wie Plastik.

Gummimischungen für Autoreifen enthalten außerdem Füllstoffe wie Ruß oder Silikate, die sie erst widerstandsfähig machen. „Die nur Nanometer großen Füllteilchen bilden ein Netzwerk, wie ein Skelett in einem menschlichen Körper“, so Persson. „Belastet man ein solches Material nur wenig, wird dieses Netzwerk elastisch verformt. Bei starken Belastungen bricht es auseinander, und das Material wird schlagartig viel weicher.“

Die Art und Weise wie Gummi mit anderen Materialien interagiert, ist deshalb sehr komplex und schwer vorherzusagen. Bo Persson vom Bereich Quantentheorie der Materialien des Jülicher Peter Grünberg Instituts beschäftigt sich seit beinahe zwanzig Jahren mit dem Thema, und hat eine umfängliche Theorie zur Reibung von Gummi und der zugrundeliegenden Kontaktmechanik entwickelt, die er kontinuierlich erweitert und verfeinert. Mit Modellen, die nach Perssons Theorie erstellt werden, sind Voraussagen über das Verhalten von Gummi bei unterschiedlichen Bedingungen möglich – auch für ungetestete Szenarien.

Eine Vielzahl von unterschiedlichen Faktoren

Perssons Theorie hat nun auch ein Forscherteam der Technischen Universität Wien bestätigt. In Zusammenarbeit mit Hankook Tire untersuchten die Wissenschaftler die Reibung von Gummi auf Eis experimentell. Sie testeten drei verschiedene Gummimischungen für Allwetter- und Winterreifen. Kleine Blöcke dieser Materialien zogen sie über vier verschiedene Eisoberflächen, die sie speziell für das Experiment hergestellt hatten.

Die Rauheit der Eisflächen wurde zuvor präzise mit einem Laserstrahl vermessen. Sie bestimmten dann die Reibung zwischen Gummi und Eis für Bedingungen, die typisch für Autoreifen im Winter auf eisiger Straße sind – bei vier Umgebungstemperaturen zwischen minus 13 und minus 5 Grad Celsius und drei verschiedenen Druckbelastungen, die denen auf Reifen eines PKW entsprachen. Die Geschwindigkeit, mit der sie die Gummiblöcke über das Eis zogen, war immer dieselbe – 65 Zentimeter pro Sekunde, typisch für eine ABS-Bremsung.

Ihre Ergebnisse analysierten die Forscher mithilfe von Perssons Modell. Laut seiner Theorie dominieren zwei unterschiedliche Beiträge die Reibung von Gummi an einer Oberfläche: die Verformung des Gummis durch Unebenheiten der Oberfläche – der sogenannte viskoelastische Beitrag – und Scherkräfte, die parallel zur Kontaktfläche der beiden Materialien wirken – der adhäsive Beitrag. „Beide hängen ab von einer Vielzahl von Einzelfaktoren, die sich zum Teil gegenseitig beeinflussen“, erläutert Persson. „Druck, Temperatur, Geschwindigkeit, Dauer des Kontakts, Rauheit der Eisfläche, Komposition und Elastizität der Gummimischung und andere Faktoren bestimmen, wie genau Eis und Gummi aufeinander einwirken.“

Komplexe Vorgänge auf molekularer Ebene

Ein wichtiges Element der Theorie ist die tatsächliche Kontaktfläche zwischen Eis und Gummi. Wie groß diese jedoch genau ist, lässt sich nicht leicht bestimmen. Denn sowohl Gummi als auch Eis haben keine perfekt glatte Oberfläche, auch wenn sie auf den ersten Blick so erscheinen. „Näher betrachtet zeigen sich kleinste Unebenheiten unterschiedlicher Größe und Tiefe, manche messen Bruchteile von Millimetern, andere nur ein paar Atomlagen“, so Persson.

„Dies bedeutet, dass sich die beiden Oberflächen nur an wenigen Punkten wirklich berühren: Die tatsächliche Kontaktfläche beträgt nur einen Bruchteil der Gesamtfläche.“ Abhängig vom Druck, mit dem die beiden Oberflächen zusammengepresst werden und von der Geschwindigkeit, mit der sie sich übereinander bewegen, können sich kleinere Unebenheiten abschleifen und die Hohlräume zwischen ihnen füllen – die Kontaktfläche wird größer. Wie groß dieser Effekt ist, hängt von der Gummimischung ab, doch auch die Umgebungstemperatur ist ein entscheidender Faktor.

Die Temperatureffekte sind ebenso komplex. Abhängig von Druck und Geschwindigkeit entsteht an den Kontaktpunkten Reibungswärme, oft nur für Mikrosekunden – sogenannte Hotspots. Gibt es viele von ihnen und dauert der Reibungsvorgang an, dann kann sich graduell der gesamte Gummiblock erwärmen. Diese Wärme wiederum kann in das Eis vordringen und es aufweichen, oder sogar zur Bildung eines dünnen Schmelzwasserfilms führen. Ob das passiert, hängt jedoch wieder von der Umgebungstemperatur ab. „Für Straßenbeläge wie Asphalt ist bei normalen Geschwindigkeiten der adhäsive Beitrag zur Reibung sehr wichtig. Doch ein solcher Wasserfilm, selbst wenn er nur ein paar Nanometer dick ist, reduziert die Scherkräfte in diesem Bereich so stark, dass ihr Anteil praktisch vernachlässigt werden kann.“

All diese komplexen Vorgänge auf mikroskopischer und molekularer Ebene werden in Perssons Theorie berücksichtigt. Die Daten der Wiener Wissenschaftler entsprachen den Vorhersagen des Modells beinahe perfekt, bis hin zur unterschiedlichen Druckabhängigkeit der Reibung für die einzelnen Gummimischungen. Bo Persson ist sehr zufrieden mit dem Ergebnis. „Dies legt nahe, dass meine Theorie die tatsächlichen Vorgänge akkurat beschreibt.“

Originalveröffentlichung:

“Rubber Friction on Ice: Experiments and Modeling”
(Tribology Letters, May 2016, DOI: 10.1007/s11249-016-0665-z)

Ansprechpartner:

Dr. Bo Persson
Peter-Grünberg-Institut, Bereich Quantentheorie der Materialien (PGI-1)
Forschungszentrum Jülich
Tel.: 02461 61-5143
E-Mail: b.persson@fz-juelich.de

Dr.-Ing. Boris Lorenz
Peter-Grünberg-Institut, Bereich Quantentheorie der Materialien (PGI-1)
Forschungszentrum Jülich
Tel.: 02461 61-9523
E-Mail: b.lorent@fz-juelich.de

Pressekontakt:

Dr. Regine Panknin
Unternehmenskommunikation
Forschungszentrum Jülich
Tel.: 02461 61-9054
E-Mail: r.panknin@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-05-19reifen... - Den perfekten Reifen berechnen (Pressemitteilung Mai 2015)
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-12-09-reibu... - Glatteis, neu berechnet (Pressemitteilung Dezember 2015)
http://www.fz-juelich.de/pgi/pgi-1/DE/Home/home_node.html - Peter Grünberg Institut, Bereich Quantentheorie der Materialien (PGI-1)

Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Edelmetallfreies Katalysatorsystem so aktiv wie Platin
23.10.2018 | Ruhr-Universität Bochum

nachricht Größere Designvielfalt: Fraunhofer LBF entwickelt Bewertungsmethodik für additiv gefertigte Bauteile
22.10.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: memory-steel – ein neues Material zur Verstärkung von Bauwerken

Ein neues, an der Empa entwickeltes Baumaterial steht kurz vor der Markteinführung: Mit «memory-steel» lassen sich nicht nur neue, sondern auch bestehende Betonstrukturen verstärken. Erhitzt man das Material (einmalig), spannt es sich wie von selber vor. Das Empa-Spin-off re-fer AG präsentiert das Material mit Formgedächtnis nun in einer Vortragsreihe.

Bislang wurden die Stahl-Armierungen in Betonbauwerken meist hydraulisch vorgespannt. Dazu sind Hüllrohre für die Führung der Spannkabel, Anker zur...

Im Focus: memory-steel - a new material for the strengthening of buildings

A new building material developed at Empa is about to be launched on the market: "memory-steel" can not only be used to reinforce new, but also existing concrete structures. When the material is heated (one-time), prestressing occurs automatically. The Empa spin-off re-fer AG is now presenting the material with shape memory in a series of lectures.

So far, the steel reinforcements in concrete structures are mostly prestressed hydraulically. This re-quires ducts for guiding the tension cables, anchors for...

Im Focus: Mit Gravitationswellen die Dunkle Materie ausleuchten

Schwarze Löcher stossen zusammen, Gravitationswellen breiten sich durch die Raumzeit aus - und ein riesiges Messgerät ermöglicht es, die Struktur des Universums zu erkunden. Dies könnte bald Realität werden, wenn die Raumantenne LISA ihren Betrieb aufnimmt. UZH-Forschende zeigen nun, dass LISA auch Aufschluss über die schwer fassbaren Partikel der Dunklen Materie geben könnte.

Dank der Laserinterferometer-Raumantenne (LISA) können Astrophysiker Gravitationswellen beobachten, die von Schwarzen Löchern ausgesendet werden. Diese...

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Lehren und Lernen mit digitalen Medien im Fokus

22.10.2018 | Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer FIT auf der MEDICA & COMPAMED: Von Elektrobenetzung bis Telemedizin

23.10.2018 | Messenachrichten

memory-steel – ein neues Material zur Verstärkung von Bauwerken

23.10.2018 | Architektur Bauwesen

Quantenkommunikation auf Glasfaserbasis - Interferenz mit Lichtquanten unabhängiger Quellen

23.10.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics