Größere Designvielfalt: Fraunhofer LBF entwickelt Bewertungsmethodik für additiv gefertigte Bauteile

Wissenschaftler des Fraunhofer LBF bei Versuchen zur Charakterisierung des bauteilgebundenen Werkstoffverhaltens additiv gefertigter Strukturen. Foto: Fraunhofer LBF, Ursula Raapke

Bei der Herstellung additiv gefertigter Bauteile mit Hilfe des Selektiven Laserschmelzens wirken sich die Parameter des Prozesses auf den damit erzeugten Werkstoff aus. Das kann zum Beispiel die Pulverherstellung oder die Belichtungsstrategie beim Aufschmelzen des Pulvers betreffen.

Aktuell beschäftigt sich das Fraunhofer LBF mit Fragestellungen rund um die Auswirkungen und die Beeinflussung des zyklischen Werkstoffverhaltens durch Parameter des Selektiven Laserschmelzens sowie deren Berücksichtigung im Rahmen einer numerischen Beanspruchungsanalyse zur Abschätzung der Lebensdauer von zyklisch beanspruchten Bauteilen.

Erste Versuchsergebnisse an Proben mit polierter und im Fertigungszustand belassener Oberfläche gaben den Darmstädter Wissenschaftlern Aufschluss über die komplexen Auswirkungen des Selektiven Laserschmelzens auf die Werkstoff- und Bauteileigenschaften. Erwartungsgemäß hat die Oberflächengüte einen entscheidenden Einfluss auf die Lebensdauer.

Die raue, additiv gefertigte Oberfläche stellt einen potentiellen Versagensort unter zyklischer Beanspruchung dar, insbesondere wenn verfahrensbedingte Stützstrukturen zur Fertigung überhängender Bauteilgeometrien erforderlich sind. Neben der Bauteiloberfläche zeigen sich innere Unregelmäßigkeiten wie Poren nicht nur im Kernwerkstoff als versagensrelevant, sondern vermehrt im Randbereich von additiv gefertigten Strukturen.

Die Versuchsergebnisse des Fraunhofer LBF unterstreichen, dass sich die Beanspruchungshöhe und die Baurichtung auf die zyklische Streckgrenze der additiv gefertigten Aluminiumlegierung AlSi10Mg auswirken. Es zeigt sich eine Richtungsabhängigkeit dieser Eigenschaft, die sich jedoch durch eine geführte Wärmebehandlung kompensieren lässt.

Neue Bewertungsmethodik für die additive Fertigung

Aufbauend auf den experimentellen Erkenntnissen unternahm das Fraunhofer LBF erste konzeptionelle Schritte zur Optimierung eines Bemessungskonzeptes für zyklisch beanspruchte Bauteile und Strukturen, um deren spezifische Werkstoffeigenschaften bewerten und zutreffend beschreiben zu können. Dabei berücksichtigen die Darmstädter Wissenschaftler maßgebliche Einflussgrößen, wie innere Unregelmäßigkeiten, die Oberflächenbeschaffenheit, die Anisotropie der Mikrostruktur oder Eigenspannungszustände, die sich auf die mechanischen und geometrischen Eigenschaften auswirken.

Dabei gehen sie von bestehenden Bemessungsmethoden für metallische Bauteile aus, die bei den klassischen Fertigungsverfahren Gießen und Schweißen Anwendung finden, und diskutieren deren Übertragbarkeit auf additiv gefertigte Strukturen.

Im nächsten Schritt wollen die Forscher des Verbundprojektes VariKa (Vernetztes Produkt- und Produktions-Engineering am Beispiel variantenreicher, ultraleichter, metallischer Fahrzeugkarosserien) an einem variablen Batterieträger für Elektrofahrzeuge die Anwendbarkeit der gewonnenen Erkenntnisse demonstrieren.

Das Förderprojekt ist Teil des Technologieprogramms »Digitale Technologien für die Wirtschaft (PAiCE)«, das vom Bundesministerium für Wirtschaft und Energie (BMWi) gefördert wird. Ziel dieses Projektes ist es, das Potenzial der additiven Fertigung, insbesondere des Selektiven Laserschmelzens (SLM) der Aluminiumlegierung AlSi10Mg, durch Quantifizieren der Schwingfestigkeit in Strukturbauteilen nachzuweisen.

Dipl.-Ing. Benjamin Möller, benjamin.moeller@lbf.fraunhofer.de

http://www.lbf-jahresbericht.de/leistungen/leichtbau/variantenvielfalt-durch-add…

Media Contact

Anke Zeidler-Finsel Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer