Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Graphen-Nanobänder: Auf die Ränder kommt es an

24.03.2016

Wie die Fachzeitschrift «Nature» in ihrer aktuellen Ausgabe berichtet, ist es Forschern der Empa, des Max-Planck-Instituts in Mainz und der TU Dresden erstmals gelungen, aus Molekülen Graphen-Nanobänder mit perfektem Zickzackrand herzustellen. Die Atome der Ränder verfügen über Elektronen mit unterschiedlichem (und gekoppeltem) Drehsinn («Spin»). Dieser könnte Graphen-Nanobänder zum Werkstoff der Wahl für eine Elektronik der Zukunft machen, die so genannte Spintronik.

Weil elektronische Bauteile immer kleiner werden, stösst die Industrie mit dem traditionellen Silizium als Halbleitermaterial allmählich an ihre Grenzen. Graphen, der Stoff mit etlichen «wundersamen» Eigenschaften, gilt als möglicher Ersatz. Die nur ein Atom dünne Kohlenstoffschicht ist ultraleicht, äusserst flexibel und ausserordentlich leitfähig.


Illustration eines Graphen-Nanobandes mit Zickzackrändern und der für dessen Herstellung verwendeten Vorläufermoleküle.

Empa / Carlo Pignedoli


"Blueprint" for the fabrication of zigzag graphene nanoribbons using a specifically synthesised precursor molecule.

Empa / Roman Fasel

Um Graphen indes für elektronische Bauteile wie Feldeffekt-Transistoren nutzen zu können, muss das Material in einen Halbleiter «verwandelt» werden; dies gelang Empa-Wissenschaftler vor einiger Zeit mit Hilfe einer neu entwickelten Methode: 2010 stellten sie erstmals nur wenige Nanometer breite Graphen-Nanobänder (graphene nanoribbons, GNR) mit präzis geformten Rändern her. Dazu liessen sie die Bänder auf einer Metalloberfläche gezielt aus ausgewählten Vorläufermolekülen wachsen.

Je schmaler die Bänder, desto grösser war deren elektronische Bandlücke – also der Energiebereich, in dem sich keine Elektronen befinden können, und der dafür verantwortlich ist, dass ein elektronischer Schalter (z.B. ein Transistor) ein- bzw. ausgeschaltet werden kann. Es gelang den Empa-Forschern in der Folge auch, die Nanobänder zu «dotieren», d.h. an bestimmten Stellen mit Fremdatomen wie Stickstoff zu versehen, um die elektronischen Eigenschaften der Graphenbänder noch weiter zu beeinflussen.

Der perfekte Bauplan

In der nun in «Nature» veröffentlichten Arbeit berichtet das Empa-Team um Roman Fasel zusammen mit Kollegen vom Max-Planck-Institut für Polymerforschung in Mainz unter der Leitung von Klaus Müllen und von der Technischen Universität Dresden um Xinliang Feng, wie sie aus geeigneten Kohlenstoff-Vorläufermolekülen und dank perfektioniertem Herstellungsprozess GNR mit perfekt zickzackförmigen Rändern synthetisierten, die einer ganz bestimmten Geometrie entlang der Längsachse des Bandes folgen. Ein wichtiger Schritt, denn durch die Geometrie der Bänder und vor allem durch die Struktur deren Ränder können die Forscher den Graphenbändern unterschiedliche Eigenschafen verleihen.

Wie beim Fliesenlegen mussten für das «Muster» des Zickzack-Graphenbandes vorgängig die richtigen Fliesen bzw. Vorläufermoleküle für die Synthese an der Oberfläche gefunden werden. Anders als in der organischen Chemie, die auf dem Weg zu einer reinen Substanz auch Nebenprodukte in Kauf nimmt, muss bei der Oberflächen-Synthese der Graphenbänder alles so angelegt sein, dass nur ein einziges Produkt entsteht. Wiederholt wechselten die Wissenschaftler zwischen Computersimulation und Experiment hin und her, um den bestmöglichen Syntheseweg zu entwerfen.

Mit Molekülen in U-Form, die sie zu einer Schlangenlinie zusammenwachsen liessen, und zusätzlichen Methylgruppen, die die Zickzackränder vervollständigten, gelang es den Forschern schliesslich, einen «Bauplan» für GNR mit perfektem Zickzackrand zu erstellen. Dass die Zickzackränder aufs Atom genau stimmten, überprüften die Forscher, indem sie die atomare Struktur mit dem Rasterkraftmikroskop (Atomic Force Microscope, AFM) untersuchten. Darüber hinaus gelang es ihnen, die elektronischen Zustände der Zickzackränder mittels Rastertunnelspektroskopie (Scanning Tunneling Spectroscopy, STS) zu charakterisieren.

Den inneren Drehsinn der Elektronen nutzen

Und genau diese zeigen eine vielversprechende Besonderheit. Elektronen können sich entweder links- oder rechts herum drehen, man spricht vom inneren Drehsinn («Spin») der Elektronen. Das Spezielle an den Zickzack-GNR: Entlang der beiden Ränder richten sich die Elektronenspins jeweils alle gleich aus; ein Effekt, den man als ferromagnetische Kopplung bezeichnet. Gleichzeitig sorgt die so genannte antiferromagnetische Kopplung dafür, dass sich die Elektronenspins an gegenüberliegenden Rändern umgekehrt ausrichten. An einem Rand des Bandes befinden sich die Elektronen also alle im «spin-up»-, am anderen im «spin-down»-Zustand.

So lassen sich an den Bandrändern zwei voneinander unabhängige Spin-Kanäle mit unterschiedlicher «Fahrtrichtung» erschliessen, ähnlich einer Autobahn mit getrennten Fahrbahnen. Über gezielt eingebaute strukturelle Defekte an den Rändern oder – etwas eleganter – über ein elektrisches, magnetisches oder optisches Signal von aussen sollten sich so beispielsweise Spin-Barrieren und -Filter entwerfen lassen, die nur noch zum An- und Abschalten Energie benötigen – die Vorstufe eines nanoskaligen – und erst noch extrem energieeffizienten – Transistors.

Möglichkeiten wie diese machen GNR für spintronische Anwendungen bzw. Bauelemente extrem interessant; diese nutzen sowohl die Ladung als auch den Spin der Elektronen. Aus dieser Kombination versprechen sich Forscher völlig neuartige Komponenten, etwa adressierbare magnetische Datenspeicher, die eingespeiste Informationen auch nach dem Abschalten des Stroms noch beibehalten.

Diese Arbeit wurde vom Schweizerischen Nationalfonds (SNF), vom Europäischen Forschungsrat (ERC) und vom US-Office of Naval Research (ONR) unterstützt.

Literaturhinweis
On-surface synthesis of graphene nanoribbons with zigzag edge topology, P Ruffieux, S Wang, B Yang, C Sanchez, J Liu, T Dienel, L Talirz, P Shinde, CA Pignedoli, D Passerone, T Dumslaff, X Feng, K Müllen, R Fasel, Nature (2016), doi: 10.1038/nature17151


Graphen-Nanobänder gleiten auf Gold
In einer Zusammenarbeit mit Forschern der Universität Basel und weiteren internationalen Kollegen untersuchten Empa-Wissenschaftler kürzlich auch die tribologischen Eigenschaften von Graphen-Nanobändern. In einem Artikel der Fachzeitschrift «Science» berichteten sie über Wechselwirkungen von Graphen-Nanobändern, die an der Spitze eines Rasterkraftmikroskops in verschiedene Richtungen über eine Goldoberfläche gezogen wurden. Mit diesen Experimenten und dank leistungsfähigen Computersimulationen konnten die Forscher nachweisen, dass nahezu reibungsfreie, schwebende Bewegungen möglich sind. Der Grund für die Reibungslosigkeit («superlubricity»): Die beiden atomaren Gitter an den kristallinen Oberflächen von Gold und Graphen sind völlig inkongruent zueinander; nirgends kann in der atomaren «Berg- und Tal-Landschaft» ein Einrasten stattfinden.
Superlubricity of Graphene Nanoribbons on Gold Surfaces, S Kawai, A Benassi, E Gnecco, H Söde, R Pawlak, X Feng, K Müllen, D Passerone, CA Pignedoli, P Ruffieux, R Fasel, E Meyer, Science 351 (6276), pp. 957-961 (2016), doi: 10.1126/science.aad3569


Weitere Informationen
Dr. Pascal Ruffieux, nanotech@surfaces, Tel. +41 58 765 46 93, pascal.ruffieux@empa.ch
Prof. Dr. Roman Fasel, nanotech@surfaces, Tel. +41 58 765 43 48, roman.fasel@empa.ch

Redaktion / Medienkontakt
Martina Peter, Kommunikation, Tel. +41 58 765 49 87, redaktion@empa.ch

Weitere Informationen:

http://www.empa.ch/de/web/s604/gnr-zigzag Webnews
http://plus.empa.ch/images/2016-03-24-GNR-Zigzag Bilder

Martina Peter | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Oberflächeneigenschaften für holzbasierte Werkstoffe
14.08.2018 | INNOVENT e.V. Technologieentwicklung Jena

nachricht Europaweit einzigartiges Forschungszentrum geht an den Start
14.08.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schatzkammer Datenbank: Digitalisierte Schwingfestigkeitskennwerte sparen Entwicklungszeit

16.08.2018 | Informationstechnologie

Interaktive Software erleichtert Design komplexer Gussformen

16.08.2018 | Informationstechnologie

Fraunhofer HHI entwickelt Quantenkommunikation für jedermann im EU-Projekt UNIQORN

16.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics