Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Glas individuell biegen

02.11.2011
Die Einsatzmöglichkeiten für gebogene Glasscheiben sind vielfältig – sie reichen von Fassaden bis hin zu Designermöbeln. Forscher entwickelten nun ein Verfahren, mit dem sich die Scheiben bis zu sechsmal schneller und deutlich kostengünstiger formen lassen. Selbst kleine Chargen können rentabel produziert werden.

Mal grau schillernd, mal eher grünlich, sehen sich Glasfassaden von Hochhäusern meistens recht ähnlich. Unverwechselbar werden sie dagegen, wenn einzelne Glasele-mente unterschiedlich geformt sind. Das Problem dabei: Viele kleine Serien von Glaselementen herzustellen, ist aufwändig und teuer.


Forscher begutachten eine gebogene Glasscheibe vor dem Versuchsofen. © Fraunhofer IWM

Zunächst muss der Glasbieger eine entsprechende Form herstellen. In einem begehbaren Ofen legt er das Glas auf diese Form, wobei es nur auf der obersten Kante aufliegt. Der Ofen wird verschlossen und über mehrere Stunden lang so weit erhitzt, bis der Werkstoff zähflüssig wird, nach unten sinkt und sich der Biegeform anpasst. Der Prozess hat allerdings seine Tücken: Erwärmt man das Glas nicht lange genug, nimmt es die vorgegebene Form nicht an. Dauert der Prozess jedoch zu lange, erzeugen die Auflagepunkte Druckstellen.

Künftig soll sich das ändern: Forscher vom Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg haben in einem vom Bundesministerium für Bildung und Forschung geförderten Verbundprojekt ein neues Biegeverfahren entwickelt. »Unser Verfahren ist etwa sechsmal schneller als das herkömmliche, deutlich energiesparender und kostengünstiger«, sagt Tobias Rist, Wissenschaftler am IWM. »Eine spezielle Form aus Stahl herzustellen, ist nicht mehr nötig.« Vielmehr haben die Forscher eine Form entwickelt, die sich je nach Anforderung wandelt – sie erinnert ein wenig an ein Nagelbrett-Bild, in das man die Hand hineindrücken kann. Zunächst ist die Form eben, alle Auflagepunkte sind auf einer Höhe. Form und aufgelegte Glasplatte werden automatisch in den Ofen gefahren. Die Forscher können ihn so bei laufendem Betrieb bestücken und müssen ihn nicht für jede Glascharge neu aufheizen. Das Verfahren spart viel Energie und einige Stunden Zeit, die der Ofen sonst zum Aufheizen und Abkühlen benötigt.

Die Temperatur des Ofens liegt zunächst einige Grad unter derjenigen, bei der das Glas zähflüssig wird. Eine weitere Besonderheit: Ein Heißluftstrahl oder ein Laser erhitzt das Glas nur an den Stellen zusätzlich, die verformt werden sollen. Lediglich hier wird es zähflüssig. Auf Knopfdruck nimmt die Form nun die gewünschte Geometrie an. Eine Vorrichtung sorgt dafür, dass sich die Auflagestellen verschieben und das Glas entsprechend seiner Temperatur und der Auflageform nach unten sinken kann. Entscheidende Vorteile: Das Material verformt sich nur an den Stellen, an denen dies gewünscht ist. Gerade Flächen bleiben gerade und krümmen sich nicht wie bisher unkontrolliert und biegen sich nicht wieder zurück. Die optische Qualität des Produkts ist daher deutlich besser, es gibt beispielsweise weniger Verzerrungen. Der Werkstoff nimmt die Form besser an und es entstehen weniger Abdrücke.

Doch wie lange muss das Glas erwärmt werden? Und welche Temperatur ist optimal? »Während beim herkömmlichen Verfahren viel über Versuch und Irrtum gelöst werden muss, simulieren wir den Prozess und das Materialverhalten im Computer. Die Ergebnisse gleichen wir mit den Ergebnissen der realen Versuche ab, um die günstigsten Prozessbedingungen zu finden und zu realisieren«, sagt Rist.

Die Forscher können die Temperatur auch während des Prozesses steuern und überwachen. Bisher haben sie Flachgläser bis zu etwa einem Quadratmeter verarbeitet. In den nächsten Schritten sollen die Formate größer und die Formen komplexer werden, beispielsweise wollen die Wissenschaftler Halbkugeln oder asphärische Formen biegen, die von der Kugelgestalt abweichen. Außerdem können die Experten Biegeprozesse verbessern oder Prozesse für funktionell beschichtete Flachgläser entwickeln.

Tobias Rist | Fraunhofer Mediendienst
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2011/november/glas-individuell-biegen.html

Weitere Berichte zu: Auflagepunkte Flachgläser IWM Ofen Prozess Temperatur

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Frühjahrsputz auf der Nanoskala
08.04.2020 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Antimikrobielle Ausstattung von Oberflächen durch Verfahrens- und Wirkstoffkombination
08.04.2020 | INNOVENT e.V. Technologieentwicklung Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Langlebigere Satelliten, weniger Weltraumschrott

Forschende der Universität Stuttgart nehmen innovatives induktives Plasmatriebwerk auf Helicon-Basis in Betrieb

Erdbeobachtungssatelliten für niedrige Flughöhen, kleiner, leichter und billiger als herkömmliche Modelle: Das sind die Ziele des EU- Projekts „DISCOVERER“, an...

Im Focus: X-ray vision through the water window

The development of the first high-repetition-rate laser source that produces coherent soft x-rays spanning the entire 'water window' heralds the beginning of a new generation of attosecond technology

The ability to generate light pulses of sub-femtosecond duration, first demonstrated some 20 years ago, has given rise to an entirely new field: attosecond...

Im Focus: Innovative Technologien für Satelliten

Er kommt ohne Verkabelung aus und seine tragende Struktur ist gleichzeitig ein Akku: An einem derart raffiniert gebauten Kleinsatelliten arbeiten Forschungsteams aus Braunschweig und Würzburg. Für 2023 ist das Testen des Kleinsatelliten im Orbit geplant.

Manche Satelliten sind nur wenig größer als eine Milchtüte. Dieser Bautypus soll jetzt eine weiter vereinfachte Architektur bekommen und dadurch noch leichter...

Im Focus: The human body as an electrical conductor, a new method of wireless power transfer

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Langlebigere Satelliten, weniger Weltraumschrott

09.04.2020 | Physik Astronomie

Impuls für die Pilzforschung

09.04.2020 | Biowissenschaften Chemie

Optimierung der Therapie diabetischer Nierenerkrankungen durch Computermodell

09.04.2020 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics