Glas individuell biegen

Forscher begutachten eine gebogene Glasscheibe vor dem Versuchsofen. © Fraunhofer IWM<br>

Mal grau schillernd, mal eher grünlich, sehen sich Glasfassaden von Hochhäusern meistens recht ähnlich. Unverwechselbar werden sie dagegen, wenn einzelne Glasele-mente unterschiedlich geformt sind. Das Problem dabei: Viele kleine Serien von Glaselementen herzustellen, ist aufwändig und teuer.

Zunächst muss der Glasbieger eine entsprechende Form herstellen. In einem begehbaren Ofen legt er das Glas auf diese Form, wobei es nur auf der obersten Kante aufliegt. Der Ofen wird verschlossen und über mehrere Stunden lang so weit erhitzt, bis der Werkstoff zähflüssig wird, nach unten sinkt und sich der Biegeform anpasst. Der Prozess hat allerdings seine Tücken: Erwärmt man das Glas nicht lange genug, nimmt es die vorgegebene Form nicht an. Dauert der Prozess jedoch zu lange, erzeugen die Auflagepunkte Druckstellen.

Künftig soll sich das ändern: Forscher vom Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg haben in einem vom Bundesministerium für Bildung und Forschung geförderten Verbundprojekt ein neues Biegeverfahren entwickelt. »Unser Verfahren ist etwa sechsmal schneller als das herkömmliche, deutlich energiesparender und kostengünstiger«, sagt Tobias Rist, Wissenschaftler am IWM. »Eine spezielle Form aus Stahl herzustellen, ist nicht mehr nötig.« Vielmehr haben die Forscher eine Form entwickelt, die sich je nach Anforderung wandelt – sie erinnert ein wenig an ein Nagelbrett-Bild, in das man die Hand hineindrücken kann. Zunächst ist die Form eben, alle Auflagepunkte sind auf einer Höhe. Form und aufgelegte Glasplatte werden automatisch in den Ofen gefahren. Die Forscher können ihn so bei laufendem Betrieb bestücken und müssen ihn nicht für jede Glascharge neu aufheizen. Das Verfahren spart viel Energie und einige Stunden Zeit, die der Ofen sonst zum Aufheizen und Abkühlen benötigt.

Die Temperatur des Ofens liegt zunächst einige Grad unter derjenigen, bei der das Glas zähflüssig wird. Eine weitere Besonderheit: Ein Heißluftstrahl oder ein Laser erhitzt das Glas nur an den Stellen zusätzlich, die verformt werden sollen. Lediglich hier wird es zähflüssig. Auf Knopfdruck nimmt die Form nun die gewünschte Geometrie an. Eine Vorrichtung sorgt dafür, dass sich die Auflagestellen verschieben und das Glas entsprechend seiner Temperatur und der Auflageform nach unten sinken kann. Entscheidende Vorteile: Das Material verformt sich nur an den Stellen, an denen dies gewünscht ist. Gerade Flächen bleiben gerade und krümmen sich nicht wie bisher unkontrolliert und biegen sich nicht wieder zurück. Die optische Qualität des Produkts ist daher deutlich besser, es gibt beispielsweise weniger Verzerrungen. Der Werkstoff nimmt die Form besser an und es entstehen weniger Abdrücke.

Doch wie lange muss das Glas erwärmt werden? Und welche Temperatur ist optimal? »Während beim herkömmlichen Verfahren viel über Versuch und Irrtum gelöst werden muss, simulieren wir den Prozess und das Materialverhalten im Computer. Die Ergebnisse gleichen wir mit den Ergebnissen der realen Versuche ab, um die günstigsten Prozessbedingungen zu finden und zu realisieren«, sagt Rist.

Die Forscher können die Temperatur auch während des Prozesses steuern und überwachen. Bisher haben sie Flachgläser bis zu etwa einem Quadratmeter verarbeitet. In den nächsten Schritten sollen die Formate größer und die Formen komplexer werden, beispielsweise wollen die Wissenschaftler Halbkugeln oder asphärische Formen biegen, die von der Kugelgestalt abweichen. Außerdem können die Experten Biegeprozesse verbessern oder Prozesse für funktionell beschichtete Flachgläser entwickeln.

Media Contact

Tobias Rist Fraunhofer Mediendienst

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer