Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gedächtnistraining für Metallstrukturen

26.01.2011
Strukturierte Oberflächen besitzen besondere Eigenschaften. Wünschenswert wäre es, diese Eigenschaften schaltbar zu machen. Dadurch ließen sich zum Beispiel Reibung und Haftung auf metallischen Oberflächen gezielt an- und ausschalten. Wie man strukturierte Oberflächen dafür trainiert, untersucht die Juniorforschungsgruppe „Metallische Mikrostrukturen“ am INM - Leibniz-Institut für Neue Materialien seit Januar 2011.

Einige Materialien, sogenannte Formgedächtnislegierungen, verändern bei einer Temperaturerhöhung ihre Form. Die Metalle haben sozusagen ein Gedächtnis dafür, in welche Form sie sich bei höherer Temperatur begeben. „Allerdings ist diese Formänderung nicht rückgängig zu machen – einen Schalter erhält man mit diesem Ein-Wege-Effekt noch nicht“, erklärte Andreas Schneider, der Leiter der neuen Gruppe. „Dazu müssen wir das Material trainieren. Das gelingt mit einer geeigneten Kombination aus Wärmebehandlung und Verformung.“


Mit dem Rasterionenmikroskop hergestellte Kupfer-Zink Mikrosäulen. INM

Dann merkt sich das Material die Form bei der höheren und bei der niedrigeren Temperatur. Dieser Zwei-Wege-Gedächtnis-Effekt ermöglicht es, über die Temperatur Oberflächenstrukturen schaltbar zu machen. Damit lassen sich zum Beispiel Reibung und Haftung auf Oberflächen gezielt an- und ausschalten.

Im zweiten Forschungsschwerpunkt untersucht die Gruppe, wie Mikrostrukturen die Belastbarkeit einer Metalloberfläche beeinflussen. „Wir erkennen, dass ein Metall umso belastbarer wird, je kleiner wir die Struktur auf der Oberfläche machen. Viele dünne Säulen tragen ein Tempeldach besser als wenige dicke Säulen“, erklärt der Juniorforscher. Die Arbeitsgruppe untersucht, welche Einflüsse zu diesem Effekt führen und ihn verändern.

Die Mikrostrukturen erzeugen die Wissenschaftler unter anderem mit einem Rasterionenmikroskop. Damit werden Schicht um Schicht kleinste Mengen Metall von der Oberfläche abgetragen. Am Ende ragen Mikrosäulen mit einem festen Durchmesser und einer festen Höhe aus dem Metall heraus. Mit einem Stempel, der von oben auf die Säulen drückt, testen die Wissenschaftler, welchen Kräften die Säulen standhalten, bevor sie nachgeben.

Als Materialien verwendet die Gruppe Metalle mit einer bestimmten kristallographischen Struktur. Die bereits untersuchten Metalle Niob, Wolfram, Tantal und Molybdän verfügen beispielsweise über eine kubisch raumzentrierte Struktur. Auch Materialien, die mit Oxidteilchen verstärkt sind, untersucht die Forschungsgruppe. Es ist bekannt, dass diese Oxidteilchen Metalle belastbarer machen. Die Gruppe untersucht, ob sich dieser Effekt auch im Nano-Mikro-Maßstab bestätigt.

Hintergrund:

Andreas Schneider studierte Materialwissenschaft an der Universität Stuttgart und am Max-Planck-Institut für Metallforschung. Er promovierte mit Auszeichnungbei Eduard Arzt in Stuttgart im Jahr 2010. Schneider erzielte hervorragende Forschungsergebnisse, die sich in zahlreichen Publikationen niederschlagen. Seine exzellente Arbeit bekräftigte den Entschluss der Geschäftsführung, den Nachwuchswissenschaftler als Leiter einer eigenen Juniorforschungsgruppe weiter zu fördern.

Das INM erweitert durch die neue Juniorforschungsgruppe sein Forschungsspektrum hin zum Material Metall. Auch die mechanische Charakterisierung auf der Nano- und Mikro-Skala treibt das INM durch die neue Gruppe voran. Dadurch schlägt es die Brücke von mechanischen Messungen auf atomarer Ebene über die Nano-Skala bis hin zu makroskopischen Größen. Das INM wendet dieses Messverfahren neben Metallen auch auf biologische Materialien an, wie z.B. Perlmutt.

Das INM - Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken betreibt grundlagen- und anwendungsorientierte Materialforschung – vom Molekül bis zur Pilotfertigung. Die Arbeit des INM umfasst in interdisziplinärer Zusammenarbeit die Bereiche Chemische Nanotechnologie, Grenzflächenmaterialien sowie Materialien in der Biologie. Seine Schwerpunkte liegen in der chemischen Synthese und physikalischen Analyse von Oberflächen, von Beschichtungen und von grenzflächenbestimmten Materialien.

Ansprechpartner:
Dr. Andreas Schneider
INM - Leibniz-Institut für Neue Materialien gGmbH
Tel. 0681 9300 312
E-mail: andreas.schneider@inm-gmbh.de

Dr. Carola Jung | idw
Weitere Informationen:
http://www.inm-gmbh.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung
13.07.2018 | Fachhochschule Südwestfalen

nachricht 3D-Druck: Stützstrukturen verhindern Schwingungen bei der Nachbearbeitung dünnwandiger Bauteile
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics