Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Funktionalisiertes Graphen leistet wenig Widerstand

01.12.2011
Graphen, der einzige zweidimensionale Feststoff, ist an sich ein hervorragender elektrischer Leiter. Doch muss nutzbares Graphen über Kontakte elektrisch an die Umgebung angebunden sein – das kann sich nachteilig auf die Leitfähigkeit auswirken. Ein Team um Prof. Gerd Bacher und Dr. Wolfgang Mertin von der Universität Duisburg-Essen (UDE) hat nun erstmals nanometergenau den Widerstand an den Kontaktstellen gemessen und seine Ergebnisse in „Nano Letters“ veröffentlicht.

Graphen ist schon jetzt in Superkondensatoren, Touchscreens und zum Beispiel als Elektrodenmaterial in Batterien im Einsatz. Für sich genommen hat es hervorragende elektrische Eigenschaften, aber in der Realität muss es stets mit anderen Materialien in Kontakt stehen, um elektrisch angebunden zu sein.

Der Widerstand an dieser Kontaktstelle kann erheblichen Einfluss auf die elektrischen Eigenschaften des Bauelements haben, bloß hatte ihn bisher niemand zufriedenstellend messen können. Um dieser Frage auf den Grund zu gehen, arbeitete die Arbeitsgruppe von Dr. Wolfgang Mertin, Mitglied des Centers for Nanointegration Duisburg-Essen (CeNIDE), mit der renommierten amerikanischen Universität Princeton zusammen.

Die Wissenschaftler in Princeton stellten mittels Thermischer Exfolierung funktionalisiertes Graphen her. Bei dieser Methode wird das Ausgangsmaterial Graphitoxid erhitzt, bis es quasi explodiert. Auf den dabei entstehenden Graphenflocken setzen sich Fremdatome ab, die als funktionelle Gruppen die Leitfähigkeit verändern. Das so entstehende funktionalisierte Graphen weist eine teilweise ungleichmäßige Gitterstruktur auf und ist aufgrund der aufsitzenden Fremdatome nicht mehr komplett plan, sondern knitterig wie einmal zusammengeknüllte und wieder geglättete Alufolie. Im Gegensatz zu hochreinem Graphen ist die Produktion des funktionalisierten Pendants jedoch in industrierelevanten Mengen möglich.

Um nun den Widerstand an der Kontaktstelle zwischen dem ungleichmäßigen Graphen und der Elektrode realistisch zu ermitteln, ist eine Messung notwendig, die auch bei winzigen Abständen ortsgenaue Daten liefert. Die Arbeitsgruppe Mertin verfügt über ein „Kelvin Probe Force Microscope“, kurz KPFM, mit dem sich Topographie und elektrisches Potenzial einer Probe kontaktlos und auf 15 nm genau in einem Schritt bestimmen lassen. „Es gibt nur sehr wenige Forschergruppen in Deutschland, die diese Messungen durchführen können“, erklärt Mertin. „Ein KPFM zu kaufen, bedeutet noch lange nicht, dass man es auch sinnvoll anwenden kann. Dafür ist viel Übung und Eigeninitiative nötig.“ Seine Arbeitsgruppe, die seit 1990 elektrische Messmethoden verwendet und auf elf Jahre Erfahrung mit dem KPFM zurückblicken kann, hat bereits eigene Messmethoden entwickelt, indem die Forscher eigene Bauteile konstruiert und verwendet haben. So entstand die Kooperation zwischen Princeton und der UDE: Die Amerikaner stellten die Proben zur Verfügung, CeNIDE-Mitglied Mertin und sein Team untersuchten den Widerstand.

Das Ergebnis: Sowohl die verwendete Titan-Gold-Elektrode als auch die funktionellen Gruppen beeinflussen die Leitfähigkeit positiv, der Widerstand liegt an der Kontaktstelle im Mittel bei gerade einmal 6,3x10-7 Ohm cm2. Das sind wichtige Informationen für die Anwender funktionalisierten Graphens: Sie können anhand der Daten nun ihre Materialien und Verfahren vergleichen und gegebenenfalls anpassen. Dr. Mertin geht im Geist schon einen Schritt weiter: „Jetzt wollen wir den Einfluss der funktionellen Gruppen noch einmal genauer unter die Lupe nehmen, und das Sauerstoff-Kohlenstoff-Verhältnis verändern. Mal sehen, ob wir so nicht einen noch geringeren Widerstand erzielen können.“

Der Nano-Letters-Beitrag „Local Voltage Drop in a Single Functionalized Graphene Sheet Characterized by Kelvin Probe Force Microscopy” ist hier zu finden:
http://pubs.acs.org/doi/abs/10.1021/nl201070c
DOI: 10.1021/nl201070c
Redaktion und weitere Informationen:
Birte Vierjahn, CeNIDE, Tel. 0203 379-1456, birte.vierjahn@uni-due.de, www.cenide.de

Ulrike Bohnsack | idw
Weitere Informationen:
http://www.cenide.de/
http://pubs.acs.org/doi/abs/10.1021/nl201070c

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neues Verständnis der Defektbildung an Silizium-Elektroden
06.07.2020 | Forschungszentrum Jülich

nachricht Das leichteste elektromagnetische Abschirmmaterial der Welt
02.07.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Im Focus: Robuste Materialien in Schwingung versetzt

Kieler Physikteam beobachtet in Echtzeit extrem schnelle elektronische Änderungen in besonderer Materialklasse

In der Physik werden sie zurzeit intensiv erforscht, in der Elektronik könnten sie ganz neue Funktionen ermöglichen: Sogenannte topologische Materialien...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Neues Verständnis der Defektbildung an Silizium-Elektroden

Theoretisch lässt sich das Speichervermögen von handelsüblichen Lithiumionen-Batterien noch vervielfachen – mit einer Elektrode, die auf Silizium anstatt auf Graphit basiert. Doch in der Praxis machen solche Akkus mit Silizium-Anoden nach wenigen Lade-Entlade-Zyklen schlapp. Ein internationales Team um Forscher des Jülicher Instituts für Energie- und Klimaforschung hat jetzt in einzigartiger Detailgenauigkeit beobachtet, wie sich die Defekte in der Anode ausbilden. Dabei entdeckten sie bislang unbekannte strukturelle Inhomogenitäten in der Grenzschicht zwischen Anode und Elektrolyt. Die Erkenntnisse sind in der Fachzeitschrift „Nature Communications“ erschienen.

Silizium-basierte Anoden können in Lithium-Ionen-Akkus prinzipiell neunmal so viel Ladung speichern wie der üblicherweise verwendete Graphit, bei gleichem...

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Social Learning in der Firma und virtuelle Seminarräume für Mitarbeiter

07.07.2020 | Seminare Workshops

„Maschinen-EKG“ soll Umwelt schonen

07.07.2020 | Maschinenbau

Erneuter Weltrekord für speedCIGS

07.07.2020 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics