Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher der TU Dortmund wandeln wässriges Gel zu glasartigem Material

03.03.2017

Prof. Jörg Tiller und Nicolas Rauner von der Fakultät Bio- und Chemieingenieurwesen der TU Dortmund haben ein Gel entwickelt, das zwar aus bis zu 90 Prozent Wasser besteht, aber trotzdem ultrasteif und extrem zäh ist. Die Erfindung ist so spektakulär, dass die Arbeit es in die aktuelle Ausgabe des renommierten Wissenschaftsmagazins „Nature“ geschafft hat. In Zukunft könnte das neue Material als druckstabile Trennmembran in der Mehrwasserentsalzung oder als hochporöses Elektrodenmaterial für Batterien oder Brennstoffzellen zum Einsatz kommen.

Bei der Entwicklung des Biomaterials haben sich Prof. Jörg Tiller und Doktorand Nicolas Rauner von der Natur inspirieren lassen – genauer gesagt, von der Biomineralisation, einem der faszinierendsten biochemischen Prozesse. Biomineralien kommen in Zähnen und Knochen, in Schneckenhäusern, Muschelschalen und Krabbenpanzern oder in Kieselalgen vor.


Haben ihre Forschung im renommierten Wissenschaftsmagazin Nature veröffentlicht: Prof. Jörg Tiller (re.) und Nicolas Rauner (li.) von der Fakultät Bio- und Chemieingenieurwesen der TU Dortmund sowie Monika Meuris. Bild: Nikolas Golsch/TU Dortmund

Ihre extrem feinen Strukturen, ihr ausgefeilter Aufbau und ihre besonderen Eigenschaften beschäftigen Forscherinnen und Forscher seit Langem – und liefern immer wieder Ansatzpunkte für die Entwicklung künstlicher Werkstoffe.

Ein solcher künstlicher Werkstoff ist das „Hydrogel“, das Prof. Jörg Tiller und Nicolas Rauner entwickelt haben und jetzt in der Fachzeitschrift Nature beschreiben. Was kann ihr Hydrogel, was andere nicht können? Ein Hydrogel ist zunächst einmal ein in Wasser gequollenes polymeres Netzwerk, also ein Material, das eigentlich fast nur aus Wasser besteht.

Ein aus dem Alltag bekanntes Hydrogel ist die Götterspeise. Nun ist die Götterspeise nicht umsonst auch als „Wackelpudding“ bekannt: Denn sie ist weder steif noch zäh, mit dem Löffel kann man sie leicht abtrennen. Steif ist ein Material, das sich schwer verbiegen lässt, und zäh, wenn man es stark verbiegen kann, bevor es zerbricht.

Hier setzt die Forschung von Tiller und Rauner an: Ihr Ziel war es, ein künstliches Hydrogel zu entwickeln, das ultrasteif und zugleich sehr zäh ist. Steife Hydrogele gibt es bisher nicht. Durch eine besondere Nanostruktur haben die Forscher es jetzt geschafft, aus einem „Wackelpudding“ ein glasartiges Material zu machen, das hauptsächlich aus Wasser besteht, sich nur mit Kraft verbiegen lässt und dabei noch stark dehnbar ist. So kann es großem Druck standhalten, ohne zu brechen.

Dass das neue Hydrogel diese beiden wertvollen Eigenschaften vereint, liegt an seiner besonderen Struktur, die durch Biomineralisation erzielt wird: Enzyme, sogenannte Phosphatasen, liegen extrem fein verteilt im Material vor. Sie sind die Katalysatoren, die den Strukturbildungsprozess auslösen, bei dem die Mineralisation direkt im Material geschieht.

So entsteht eine feste und wohlgeordnete Calciumphosphat-Nanostruktur, die ein stabiles Netzwerk bildet und für die besonderen Eigenschaften verantwortlich ist. Die aufwendige Aufklärung der Strukturen gelang dabei Monika Meuris, Expertin für Elektronenmikroskopie am Zentrum für Elektronenmikroskopie und Materialforschung (ZEMM) der TU Dortmund. In Zukunft wollen die Forscher diese neue Art der Materialherstellung für den Nachbau natürlicher Verbundmaterialien wie Muscheln oder Knochen nutzen.

Für beide Wissenschaftler ist es die erste Nature-Publikation – und eine besondere Auszeichnung, denn aus dem Bereich Materialwissenschaften stammen weniger als zehn Prozent aller Nature-Artikel. „Wir haben uns nach fünf Jahren Forschungsarbeit in einem mehrmonatigen Begutachtungs-prozess durchgesetzt“, sagt Prof. Jörg Tiller. „Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics“ lautet der Titel des Artikels.

Prof. Jörg Tiller ist Professor für Biomaterialien und Polymerwissenschaften an der Fakultät Bio- und Chemieingenieurwesen der TU Dortmund. Nicolas Rauner hat an der TU Dortmund Polymerwissenschaften studiert und promoviert derzeit bei Tiller. Monika Meuris ist Leiterin des Zentrums für Elektronenmikroskopie und Materialforschung (ZEMM), das ebenfalls zur Tiller-Gruppe gehört. An der TU Dortmund erforscht und entwickelt Prof. Jörg Tiller seit 2007 unter anderem Biomaterialien, also Materialien, die mit biologischen Systemen interagieren. Diese können zum Beispiel antimikrobielle oder biokatalytische Eigenschaften haben oder auf äußere Einflüsse reagieren. Weitere Forschungsschwerpunkte liegen in den Bereichen Smart Materials und Polymersynthese.

Weitere Informationen:

http://dx.doi.org/10.1038/nature21392

Martin Rothenberg | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-dortmund.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Oberflächeneigenschaften für holzbasierte Werkstoffe
14.08.2018 | INNOVENT e.V. Technologieentwicklung Jena

nachricht Europaweit einzigartiges Forschungszentrum geht an den Start
14.08.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantenverschränkung erstmals mit Licht von Quasaren bestätigt

20.08.2018 | Physik Astronomie

1,6 Millionen Euro für den Aufbau einer Forschungsgruppe zu Quantentechnologien

20.08.2018 | Förderungen Preise

IHP-Technologie darf in den Weltraum fliegen

20.08.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics