Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ferromagnetisch und antiferromagnetisch – und das gleichzeitig

15.07.2013
Forscher des Paul Scherrer Instituts PSI haben dünne, kristalline Schichten des Materials LuMnO3 hergestellt, die gleichzeitig ferromagnetisch und antiferromagnetisch sind.

Die LuMnO3-Schicht ist in unmittelbarer Nähe der Grenzfläche zum Trägerkristall ferromagnetisch; mit zunehmendem Abstand nimmt sie die für das Material sonst übliche antiferromagnetische Ordnung an, während der Ferromagnetismus immer schwächer wird. Die Möglichkeit, zwei verschiedene magnetische Ordnungen innerhalb eines Materials zu erzeugen, könnte von grosser technischer Bedeutung sein. Die Ergebnisse erscheinen in Kürze im Journal Physical Review Letters.


Jonathan White, Erstautor der Veröffentlichung, führt ein Experiment an der Neutronenquelle SINQ des PSI durch. (Foto Scanderbeg Sauer Photography)

Elektronische Bauteile aus mehreren Schichten mit verschiedener magnetischer Ordnung werden vielfach in unterschiedlichen Geräten eingesetzt – etwa in Leseköpfen von Festplatten, die die gespeicherten Daten ein- oder auslesen, oder in hochempfindlichen Magnetfeldsensoren, die elektrisch ausgelesen werden. Forschende des Paul Scherrer Instituts PSI haben nun ein Material gefunden, das verschiedene magnetische Eigenschaften kombiniert. Bei dem verwendeten Material handelt es sich um Lutetium-Mangan-Oxid, LuMnO3, ein Material mit einer Perowskitstruktur, wie sie auch von Hochtemperatursupraleitern bekannt ist. Die dünnen, einkristallinen Schichten wurden auf einem unmagnetischen, einkristallinen Trägerkristall (YAlO3) gewachsen.

Verzerrung macht gegensätzliche Ordnungen möglich

Normalerweise zeigt einkristallines LuMnO3 eine antiferromagnetische Ordnung, bei der immer zwei Spins in die eine, und die nächsten beiden in die entgegengesetzte Richtung weisen. In den am PSI erzeugten und untersuchten Schichten wurde in den ersten 10 Nanometern, also in unmittelbar Nähe zu der Oberfläche des Trägerkristalls, statt der antiferromagnetischen eine ferromagnetische Ordnung beobachtet, bei der alle Spins in die gleiche Richtung zeigen. „Normalerweise kann man einen Antiferromagneten nicht in einen Ferromagneten umwandeln. Das geht schon aus Symmetriegründen nicht. Hier muss etwa Besonderes passiert sein“, betont Christof Schneider, einer der beteiligten Forscher. Die wahrscheinlichste Erklärung für den Effekt ist, dass sich die Kristallstruktur des Materials verzerrt, weil sie sich an die Struktur des Trägerkristalls anpasst. In der verzerrten Struktur ist die ferromagnetische die bevorzugte magnetische Ordnung. Mit wachsendem Abstand zur Unterlage entspannt sich die kristalline Struktur etwas, aber nicht vollständig, so dass sich ab einer gewissen Entfernung die erwartete antiferromagnetische Ordnung einstellen sollte. Beobachtet wird stattdessen eine antiferromagnetische Spinspirale, bei der die Spins in der Form einer Wendeltreppe angeordnet sind.

Experimente mit Neutronen zur Untersuchung der magnetischen Struktur an LuMnO3 geben deutliche Hinweise auf diese Spinspirale. Die Messergebnisse legen die Vermutung nahe, dass zusätzlich die erwartete antiferromagnetische Ordnung existiert. „Es war erstaunlich, dass wir in Schichten, die nur 80 Nanometer dick und ein Hundertstel Milligramm schwer waren, überhaupt die magnetische Struktur mit Neutronen messen konnten“, so Christof Niedermayer, der einen Teil der Neutronenexperimente durchgeführt hat.

Vielfältige Kompetenz am PSI

In das Ergebnis gingen die Kompetenzen verschiedener Labore des Paul Scherrer Instituts ein. Die untersuchten Schichten wurden in der Arbeitsgruppe Materialien im Bereich Allgemeine Energie mittels Laserablation hergestellt. Das mit dem Laser verdampfte Rohmaterial wurde dabei auf einer geheizten, einkristallinen YAlO3-Unterlage abgeschieden, so dass eine einkristalline Schicht entstehen konnte. Die magnetischen Eigenschaften wurden an den Grossanlagen des PSI mit Hilfe von Neutronen und Myonen untersucht. Hier kommt insbesondere zum Tragen, dass Neutronen und Myonen ein magnetisches Moment haben und so einen detaillierten Einblick in die magnetische Struktur der Materialien ermöglichen. So konnte zum Beispiel mittels Neutronenreflektometrie die ferromagnetische Komponente innerhalb der Schichten lokalisiert werden.

Unterstützt wird die Zusammenarbeit der verschiedenen Labore durch interne Förderinstrumente des Paul Scherrer Instituts: die interne Forschungskommission und das Cross-Programm, das die Zusammenarbeit zwischen verschiedenen Forschungsbereichen des Instituts fördert. Zusätzlich wird es vom Schweizerischen Nationalfonds SNF im Rahmen des MaNEP-Programms zur Erforschung von Materialien mit neuartigen elektrischen Eigenschaften unterstützt.

Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1500 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.
Kontakt/Ansprechpartner
Dr. Christof Schneider, Arbeitsgruppe Materialien, Paul Scherrer Institut, 5232 Villigen PSI; E-Mail: christof.schneider@psi.ch; Tel: +41 56 310 41 22

Dr. Christof Niedermayer, Labor für Neutronenstreuung, Paul Scherrer Institut, 5232 Villigen PSI; E-Mail: christof.niedermayer@psi.ch; Tel: +41 56 310 20 86

Dr. Michel Kenzelmann, Labor für Entwicklung und Methoden, Paul Scherrer Institut, 5232 Villigen PSI;

E-Mail: michel.kenzelmann@psi.ch; Tel: +41 56 310 53 81

Originalveröffentlichung:
Strain-induced ferromagnetism in antiferromagnetic LuMnO3 thin films
J. S.White, M.Bator, Y.Hu, H. Luetkens, J. Stahn, S.Capelli, S.Das, M.Döbeli, Th. Lippert, V.K.Malik, J.Martynczuk, A.Wokaun, M.Kenzelmann, Ch.Niedermayer, and C.W. Schneider

Zur Veröffentlichung in Phys. Rev. Lett. angenommen.

Ankündigung des Artikels auf der Webseite von Phys. Rev. Lett.: http://prl.aps.org/accepted/2207dY5bLdd1e53ba55309942d0e3dc27317ae91a

Text des Artikels zum Download: http://arxiv.org/abs/1304.7200

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch/materials/
http://www.psi.ch/sinq/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung
13.07.2018 | Fachhochschule Südwestfalen

nachricht 3D-Druck: Stützstrukturen verhindern Schwingungen bei der Nachbearbeitung dünnwandiger Bauteile
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics